

Inspection Plus software for Haas machining centres

© 2002 Renishaw. All rights reserved.

Renishaw® is a registered trademark of Renishaw plc.

This document may not be copied or reproduced in whole or in part, or transferred to any other media or language, by any means, without the prior written permission of Renishaw.

The publication of material within this document does not imply freedom from the patent rights of Renishaw plc.

Disclaimer

Considerable effort has been made to ensure that the contents of this document are free from inaccuracies and omissions. However, Renishaw makes no warranties with respect to the contents of this document and specifically disclaims any implied warranties. Renishaw reserves the right to make changes to this document and to the product described herein without obligation to notify any person of such changes.

Trademarks

All brand names and product names used in this document are trade names, service marks, trademarks, or registered trademarks of their respective owners.

Renishaw part no: H-2000-6222-00-B

Issued: March 2002 Revised: September 2002

Equipment registration record

Please complete this form (and Form 2 overleaf if applicable) after the Renishaw equipment has been installed on your machine. Keep one copy yourself and return a copy to your local Renishaw Customer Support office (refer to the manual for the address and telephone number). The Renishaw Installation Engineer should normally complete these forms.

MACHINE DETAILS	
Machine type Controller Special control options	
RENISHAW HARDWARE	RENISHAW SOFTWARE
Inspection probe type Interface type Tool setting probe type Interface type Special switch (spin) probe on Switch (spin) probe off	Inspection disk(s) Tool setting disk(s) OR OTHER) WHERE APPLICABLE Dual systems only Switch on inspection probe Switch on tool setting
Start/error signal	Other
ADDITIONAL INFORMATION	Tick box if Form 2 overleaf has been filled in.
Customer's name Customer's address Customer's tel. no. Customer's contact name	Installation engineer Date of training

Software deviation record

Standard Renishaw	kit no.	Software disk nos.
Reason for Deviatio	n	
Software no. and macro no.	Comments and correc	tions
A copy of this deviation	n sheet will be retained by Rer	uthorised is subject to copyright. nishaw plc. d by the customer – they cannot be retained by

Caution – Software safety

The software you have purchased is used to control the movements of a machine tool. It has been designed to cause the machine to operate in a specified manner under operator control, and has been configured for a particular combination of machine tool hardware and controller.

Renishaw has no control over the exact program configuration of the controller with which the software is to be used, nor of the mechanical layout of the machine. Therefore, it is the responsibility of the person putting the software into operation to:

- ensure that all machine safety guards are in position and are correctly working before commencement of operation;
- ensure that any manual overrides are disabled before commencement of operation;
- verify that the program steps invoked by this software are compatible with the controller for which they are intended;
- ensure that any moves which the machine will be instructed to make under program control would not cause the machine to inflict damage upon itself or upon any person in the vicinity;
- be thoroughly familiar with the machine tool and its controller and know the location of all emergency stop switches.

Disclaimer

This software is prepared with a base number for adjusting the range of #500 series variables used for data storage. The default settings as supplied have been prepared to comply with current Haas recommendations for probe variable use and avoid conflicts with other current Renishaw software packages unless otherwise stated. Checks for possible variable conflicts must always be made during each installation.

Current Haas macro variable recommendations:

#0 to #33	Volatile (for general use)
#100 to #119	Reserved for Haas use
#120 to #139	Available for user
#140 to #155	Purchased devices (probe, bar feeder, pallet changer, etc.)
#156 to #199	Probe use
#500 to #519	Reserved for Haas use
#520 to #539	Available for user
#540 to #555	Purchased devices (probe, bar feeder, pallet changer, etc.)
#556 to #599	Probe use

Base number setting for macro variables:

This documentation shows default variable numbers and typically includes the base number calculation in brackets.

Example: #590 (582+8)

Table of contents

Before you begin

Before you begin	1
Measurement values used in this manual	2
List of associated publications	2
About the Inspection Plus software	2
Software kit	3
Floppy disk A-4012-0881	3
File 40120882 – Basic cycles	3
File 40120883 – Option 1 cycles	3
File 40120884 – Option 2 cycles	4
File 40120885 – One-touch cycles	4
Macro memory requirements	4
File 40120882	5
File 40120883	5
File 40120884	6
Haas machines	6
Look ahead G103P1	7
M codes for probe switching	7
Special M codes for inspection and tool setting applications	7
User selectable M codes	7
Example – macros O9008/O9009 (M80/M81)	8
Renishaw customer services	9
Calling a Renishaw subsidiary office	9

Chapter 1 – Getting started

Why calibrate your Renishaw probe?	1-2
Calibrating in a bored hole	1-3
Calibrating in a ring gauge	1-3
Calibrating the probe length	1-3
Calibration cycles	1-3

Chapter 2	 Software installation 	
	Installing the software	2-2
	#562 back-off distance	2-3
	Settings macro O9724	2-3
Chapter 3	 Optional inputs 	
	Optional inputs	3-2
Chapter 4	 Variable outputs 	
	Variable outputs – chart 1	4-2
	Variable outputs - chart 2	4-3
Chapter 5	 Protected positioning cycle 	
	Protected positioning (probe trigger monitor) – macro O9810	5-2
Chapter 6	6 – Calibration cycles	
	Calibration cycles – an overview	6-2
	Calibrating the probe length – macro O9801	
	Calibrating the stylus X and Y offsets – macro O9802	
	Calibrating the stylus ball radius – macro O9803	
	Calibrating the vector stylus ball radius – macro O9804	
	Example 1 – Full calibration in an internal feature	
		-20
Chapter 7	 Measuring cycles 	
	X Y Z single surface measurement – macro O9811	
	Web / pocket measurement – macro O9812	
	Bore / boss measurement – macro O9814	
	Finding an internal corner – macro O9815	
		-22

Chapter 8 – Vector measuring cycles

Angle single surface measurement – macro O9821	8-2
Angle web pocket measurement – macro O9822	8-7
3-point bore / boss measurement – macro O9823	8-13

Chapter 9 – Additional cycles

4th axis X measurement - macro O9817	9-2
4th axis Y measurement - macro O9818	9-6
Bore / boss on PCD measurement - macro O9819	9-10
Stock allowance - macro O9820	9-14
Storing multi-stylus data – macro O9830	9-20
Loading multi-stylus data – macro O9831	9-23
Turning the probe on - macro O9832	9-26
Turning the probe off – macro O9833	9-27
Determining feature-to-feature data (XY plane) - macro O9834	9-28
Determining feature-to-feature data (Z plane) – macro O9834	9-34
Updating the SPC tool offset – macro O9835	9-40
Optimising a probing cycle – macro O9836	9-42
Angle measurement (X Y plane) - macro O9843	9-46

Chapter 10 – Macro alarms

General alarms	2
Optimisation macro (O9836) only alarms 10-3	5

Appendix A – Example job

IntroductionA-2	
Probe operations	

Appendix B – Features, cycles and limitations of the Inspection Plus software

Features of the Inspection Plus Software	. B-2
Cycles B-3	
Limitations	.B-4
Limitations when using vector cycles O9821, O9822 and O9823	. B-4
Use of 3-point bore/boss macro O9823	. B-4
Mathematical precision	. B-5
Effect of vector calibration data on results	. B-5

Appendix C – Settings macro details

Macro G65P9724 C-2

Appendix D – Tolerances

Tolerances D-2	2
True position tolerances D-	3

Appendix E – Experience values Ee

Experience values EeE-2	
Reason for using this optionE-2	

Appendix F – Additional spare tool offsets

Additional spare tool offsets F-2

Appendix G – Printing a macro output

Example of printing a macro output		G-2
------------------------------------	--	-----

Appendix H – Output flow (bore/boss and web/pocket cycles)

Output flow (bore/boss and web/pocket cycles)) H-	·2
---	------	----

Appendix I – Use of macro variables

Local variables	I-2
Common variables	I-2
Common retained variables	I-3

Appendix J – General probing applications

Example 1 – Part identificationJ-2	
Example 2 – Probe measure every nth component J-3	

Appendix K – One-touch measuring

Introduction	K-2
Why use a one-touch probe cycle?	K-2
Machine distortion	K-2
Comparing cycle times	K-2
Installing the one-touch cycles	K-3
Macro edits	K-4
Measuring the feedrate	K-4
Stand-off and overtravel distance	K-4
System operation	K-5
Using standard skip	K-5
Additional variables used	K-6
Approach feedrates	K-6
Back-off distance #562	K-6
False trigger loop	K-6
Acceleration and deceleration allowance	K-6
Q input	K-8
Measuring move detail	K-9
One-touch measuring move logic	K-10

Glossary of terms – Abbreviations and definitions

This page is intentionally left blank.

Before you begin

This programming manual contains detailed information about how to use the Inspection Plus software for programming, operating and controlling a machine tool.

Split into ten self-contained chapters, the manual is structured to provide the information that you require to use the Inspection Plus software effectively:

- Chapter 1 Getting started explains why your probe must be calibrated before you start using it.
- Chapter 2 Software installation describes how to install and customise the Inspection Plus software on your machine.
- Chapter 3 Optional inputs provides a complete list of the optional inputs that are required by some of the macro cycles.
- Chapter 4 Variable outputs provides a complete list of the optional outputs that are produced by some of the macro cycles.
- Chapter 5 Protected positioning cycles describes how to use the protected positioning macro (O9810). When correctly used, this macro prevents damage to the probe stylus in the event of the probe colliding with the workpiece.
- Chapter 6 Calibration cycles describes how to use the four macros that are provided for calibrating a probe.
- Chapter 7 Measuring cycles describes how to use the non-vector measuring cycle macros.
- Chapter 8 Vector measuring cycles describes how to use the three vector measuring cycle macros.
- Chapter 9 Additional cycles describes how to use the macro cycles that have not been described in previous chapters.

Chapter 10 – Macro alarms describes the macro alarm numbers or messages that may be displayed on the screen of the machine tool controller when an error occurs. An explanation of the meaning and possible cause of each alarm message is provided, together with typical actions you must take to correct the fault causing the message.

Measurement values used in this manual

Throughout this manual, metric units of measurement, i.e. millimetres, are used in the examples. The equivalent imperial measurements, i.e. inches, are shown in brackets.

List of associated publications

When you are working with the Inspection Plus software, you may find it useful to refer to the following Renishaw publications:

- Probe software for machine tools Data sheet (Renishaw Part No. H-2000-2289).
- *Probe installation manual for Haas machines* (Renishaw Part No. H-2000-6221).

About the Inspection Plus software

For a comprehensive description of the facilities provided by the software and also the limitations of the software, you should refer to Appendix B – Features, cycles and mimitations of the Inspection Plus software.

Software kit

Inspection Plus software - Renishaw Part No. A-4012-0880

This comprises the following item:

Floppy disk – Part No. A-4012-0881

Floppy disk A-4012-0881

This comprises one 3½ inch floppy disk, MS-DOS format (1.4 Mb).

The disk contains the following data:

Basic cycles	(File 40120882)
Option 1 cycles	(File 40120883)
Option 2 cycles	(File 40120884)
One-touch probe cycle	(File 40120885)

File 40120882 – basic cycles

O9721	O9722	O9723	O9724	O9726	O9727
O9731	O9732	O9801	O9802	O9803	O9810
O9811	O9812	O9814			

The disk is formatted to multi-load <u>all</u> macros.

File 40120883 – Option 1 cycles

O9730	O9804	O9815	O9816	O9817	O9818
O9821	O9822	O9823	O9834	O9843	

The disk is formatted to multi-load <u>all</u> macros.

File 40120884 – Option 2 cycles

O9819 O9820 O9830 O9831 O9832 O9833 O9835 O9836

The disk is formatted to multi-load <u>all</u> macros.

File 40120885 – One-touch cycles

O9726

Macro memory requirements

This section lists the amount of memory (in Kbytes) that is required by each macro contained in each of the Inspection Plus software floppy disks. Before you load macros, you should first work out the total amount of memory required by the macros you wish to load. Next, you should check that the machine controller has sufficient memory capacity for these macros.

Useful memory size conversions:

1Kb = 2.5 m (8.2 ft) of software tape8Kb = 20 m (65.6 ft) of software tape

File 40120882

The total amount of memory required for all macros in this file is 13.5 Kb. The memory requirements for each macro are as follows:

Macro nu	Memory (Kbytes)	
O9721	X diameter move	0.594
O9722	Y diameter move	0.578
O9723	Active tool offset macro	0.040
O9724	Setting macro	0.371
O9726	X,Y,Z, basic move	1.526
O9727	Vector diameter move	0.510
O9731	Vector calibration data find	0.658
	(also used for ATAN calculation)	
O9732	Offset update macro	1.000
O9801	Probe length calibration	0.387
O9802	Stylus X,Y offset calibration	0.463
O9803	Stylus ball radius calibration	0.677
O9810	Protected positioning	0.429
O9811	XYZ single surface measure	2.487
O9812	Web pocket measure	2.109
O9814	Bore boss measure	1.673

File 40120883

The total amount of memory required for all macros in this file is 26.0 Kb. The memory requirements for each macro are as follows:

Macro nun	number and function Memory (Kbytes)	
O9730 O9804 O9815 O9816 O9817	Print macro Vector stylus ball radius calibration Internal measure External measure 4th axis X measure	3.771 0.991 2.813 2.941 1.448

O9818	4th axis Y measure	1.440
O9821	Angle single surface measure	1.983
O9822	Angle web pocket	2.452
O9823	3-point bore boss	2.839
O9834	Feature-to-feature measure	3.893
O9843	XY plane angle measure	1.401

File 40120884

The total amount of memory required for all macros in this file is 7.5 Kb. The memory requirements for each macro are as follows:

Macro nu	mber and function	Memory (Kbytes)
O9819	Bore boss on PCD	1.715
O9820	Stock allowance	2.445
O9830	Multi-stylus store	0.453
O9831	Multi-stylus load	0.453
O9832	Turn-on macro	0.387
O9833	Turn-off macro	0.381
O9835	SPC tool offset update	0.515
O9836	Optimisation macro	1.159

Haas machines

With this control the G103 command is used to limit read ahead.

Example

Read only one block ahead
Protected positioning move
leasure cycle
Protected positioning move
ancel read ahead

Look ahead G103P1

The Renishaw cycles have G103P1 embedded in macro O9724 to turn the look ahead off during the probe cycle. The G103 command is embedded at the bottom of the cycles to turn look ahead back on at the end of the cycles.

M codes for probe switching

The software has been modified in macro O9724 to include an M19 orientation. If the spindle re-orients during probing, the M19 may be deleted from O9724 and added to your main program prior to running any probe cycles. If M-codes are being used to turn the probe on or off, they should be editied into O9832/O9833.

Special M codes for inspection and tool setting applications

User selectable M codes

M code called macros for the following functions must be installed for use with the tool setting arm control.

- M80 Activate tool setting arm (macro O9008) This brings the tool setting arm into the operating position and makes the probe active.
- M81 Stow tool setting arm (macro O9009) This retracts the tool setting arm and switches off the probe.

Example - macros O9008/O9009 (M80/M81)

O9008(REN M80 ARM ACTIVE) G103P1 G80G40 G91G28Z0(RETURN Z AXIS) G90 M52(ARM DIR. ACT. AND TLSET ON) M53(ARM MOVE COMMAND) #3001=0 N10 IF[#1029EQ0]GOTO20(SKIP STATUS) IF[#3001LT5000]GOTO10 M63 G103 #3000=91(TOOL SET ARM ACTIVE TIME OUT) N20 M63(SWITCH MOVE COMMAND OFF) G103 M99 O9009(REN M81 ARM STOW) G103P1 M62(ARM DIR. STOW. AND INSP ON) M53(ARM MOVE COMMAND) #3001=0 N10 IF[#1021EQ0]GOTO20 IF[#3001LT5000]GOTO10 M63 G103 #3000=91(TOOL SET ARM STOW TIME OUT) N20 M63(SWITCH MOVE COMMAND OFF) G103 M99 %

Renishaw customer services

Calling a Renishaw subsidiary office

If you have a question about the software, first consult the documentation and other printed information included with your product.

If you cannot find a solution, you can receive information on how to obtain customer support by contacting the Renishaw subsidiary company that serves your country (see the last page of this manual for contact details).

When you call, it will help the Renishaw support staff if you have the appropriate product documentation at hand. Please be prepared to give the following information (as applicable):

- The version of the product you are using (see the *Equipment registration record* form).
- The type of hardware that you are using (see the *Equipment registration record* form).
- The exact wording of any messages that appear on your screen.
- A description of what happened and what you were doing when the problem occurred.
- A description of how you tried to solve the problem.

This page is intentionally left blank.

Chapter 1

Getting started

Before you start to use the Inspection Plus software, take time to read this chapter. It will provide you with a basic understanding of the importance of accurately calibrating the probe you intend to use for measuring. Only when the probe is accurately calibrated can you achieve total quality control over your manufacturing process.

Contained in this chapter

Why calibrate your Renishaw probe?	1-2
Calibrating in a bored hole	1-3
Calibrating in a ring gauge	1-3
Calibrating the probe length	1-3
Calibration cycles	1-3

Why calibrate your Renishaw probe?

In Chapter 6 of this manual you will find details of the macros used to calibrate your Renishaw probe. But why is it so important that your probe is calibrated?

When you fit your Renishaw probe into a machine shank/holder, it is **not** necessary for the stylus to run true to the spindle centre-line. A small amount of run-out can be tolerated, but it is good practice to get the stylus mechanically on-centre to reduce the effects of spindle and tool orientation errors. Without calibration of the probe the run-out will lead to inaccurate results. By calibrating your probe, the run-out is automatically accounted for. The 'calibration in a bored hole' cycle (macro O9802) provides the data to allow for this run-out.

As each Renishaw probe system is unique, it is imperative that you calibrate it in the following circumstances:

- If it is the first time your probe system is to be used.
- If a new stylus is fitted to your probe.
- If it is suspected that the stylus has become distorted or that the probe has crashed.
- At regular intervals to compensate for mechanical changes of your machine tool.
- If repeatability of relocation of the probe's shank is poor. In this case, the probe may need to be recalibrated each time it is selected.

Three different operations are used to calibrate a probe. They are:

- Calibrating in a bored hole;
- Calibrating in a ring gauge; and
- Calibrating the probe length.

Calibrating in a bored hole

Calibrating your probe in a bored hole automatically stores values for the offset of the stylus ball to the spindle centre line. The stored values are then automatically used in the measuring cycles. They compensate the measured values so that they are relative to the true spindle centre line.

Calibrating in a ring gauge

Calibrating your probe in a ring gauge of a known diameter automatically stores one or more values for the radius of the stylus ball. The stored values are then automatically used by the measuring cycles to give the true size of the feature. The values are also used to give true positions of single surface features.

NOTE: The stored radii values are based on the true electronic trigger points. These values are different from the physical sizes.

Calibrating the probe length

Probe length calibration on a known reference surface stores the length based on the electronic trigger point. This is different from the physical length of the probe assembly. Additionally, this operation can automatically compensate for machine and fixture height errors by adjusting the probe length value that is stored.

Calibration cycles

Four calibration cycles are provided with the Inspection Plus software. These may be used in conjunction with one another for complete calibration of the probe. The function of each macro is summarised below. For further details, refer to Chapter 6 – Calibration cycles.

Macro O9801	This is used to establish the probe length in its tool shank.
Macro O9802	This is used to establish the stylus off-centre values.
Macro O9803	This is used to establish the stylus ball radius values. It is suitable for all measuring cycles <i>except</i> O9821, O9822 and O9823.
Macro O9804	This is used to establish the vector stylus ball radius values. It is suitable for <i>all</i> measuring cycles, <i>including</i> O9821, O9822 and O9823.

For complete calibration of a probe system, you must use macros O9801 and O9802, and either O9803 or O9804.

The Renishaw calibration cycles are split into separate cycles for flexibility. If, however, the calibration feature is accurately known for both size and position, e.g. a ring gauge where the size is known, and the position is accurately found using a dial test indicator, it is then possible for you to write a program which completes the full calibration procedure in one operation by calling all of the above macros.

Chapter 2

Software installation

This chapter describes how you should load and customise the Inspection Plus software. It supplements the information described in the 'Software installation' section of the manual titled *Probe systems installation manual for Haas machines* (Renishaw Part No. H-2000-6221).

Contained in this chapter

Installing the software	2-2
#562 back-off distance	2-3
Settings macro O9724	2-3

Installing the software

It is important that the software is installed to suit the type of controller and options available. Do this as described below:

- 1. First, refer to Appendix B Features, cycles and limitations of the Inspection Plus software to determine whether the Inspection Plus software is suitable for your needs.
- 2. Decide which cycles you require before proceeding (see the section titled *Macro memory requirements* in the preliminary part of this manual titled *Before you begin*).
- 3. Load the basic cycles on file 40120882.
 - (1) Delete any unwanted O98-- series cycles.
 - (2) If the vector cycles are to be used, delete the following macro:

O9803 (macro O9804 is used instead)

Otherwise delete the following macros:

O9727 O9731 O9804 (these macros are used only for vector cycles)

(3) If the print option is not to be used, delete the following macro:

O9730

- 4. Establish which of the Option 1 file 40120882 cycles you require. Load the Option 1 file if required. Delete all unwanted macros from the control before loading further macros.
- 5. Establish which of the Option 2 file 40120883 cycles you require. Load the Option 2 file if required. Delete all unwanted macros from the control.

#562 back-off distance

Run the optimisation macro to establish the #562 (556 + 6) back-off distance and #169 fast feedrate.

Refer to:

- Appendix I Use of macro variables for a description on the use of macro variables; and
- Chapter 9 Additional cycles for a description on using the optimisation macro O9836.

For small and medium size machines, i.e. machines having less than 1000 mm (40 in) of axis travel, the standard feedrates as supplied are normally acceptable. This macro may be deleted by the operator after optimisation is completed.

Settings macro O9724

If the default values are not suitable, you will need to change the settings macro O9724. Refer to *Appendix C* – *Settings macro details* for a description of macro O9724.

Set the following settings macro options:

- Work offset type
- Tolerance alarms or flag only (FMS type application)

The examples in this document are for general guidance only. Please note that the exact programming format may not suit either your machine set or recommended method as specified by your machine builder. This page is intentionally left blank.

Chapter 3

Optional inputs

This chapter lists and explains the optional inputs that may be applied to some of the macros. You will be referred to this chapter from other chapters when an optional input is required.

Further information regarding optional inputs is to be found in the appendices to this manual.

Contained in this chapter

Optional inputs		3-2
-----------------	--	-----

Optional inputs

The examples described below assume that the controller has been configured for metric values, i.e. millimetres. The equivalent imperial measurement values, i.e. inches, are shown in brackets.

Bb b = Angle tolerance of the surface, e.g. 30 degrees ± 1 degree inputs A30.B1.

Example: B5. to set a tolerance of 5 degrees.

Ee e = Experience value. Specify the number of a spare tool offset where an adjustment value to the measured size is stored (see Appendix E – Experience value Ee).

Example: E21. causes the experience value stored in tool offset 21 to be applied to the measured size.

Ff f = Percent feedback when updating a tool offset (see Appendix <math>D - Tolerances). Enter a value between 0 and 1 (0% and 100%). The default value is 100%.

Also

Feedrate in the protected positioning macro O9810 (see *Chapter 5 – Protected positioning cycles*).

Example: F15 sets a feedrate of 15 mm/min. (F.6 sets a feedrate of 0.6 in/min.)

Hh h = The tolerance value of a feature dimension being measured.

Example: For dimension 50.0 mm +0.4 mm –0 mm, the nominal tolerance is 50.2 mm with H.2. (For dimension 1.968 in +0.016 in –0 in, the nominal tolerance is 1.976 in with H.008.)

li Jj Kk		See the relevant measuring cycles and specific macro calls.			
Mm	m =		position tolerance of a feature. A cylindrical theoretical position.		
		Example:	M.1 sets a true position tolerance of 0.1 mm. (M.004 sets a true position tolerance of 0.004 in.)		
Qq	q =	values are uns expected posit	be overtravel distance for use when the default uitable. The probe will then travel beyond the ion when it searches for a surface. Default m (0.16 in) in the Z-axis and 10 mm (0.394 in)		
		Also used in th Additional cycl	e optimisation macro O9836 (see <i>Chapter 9 – es</i> for details).		
		Example:	Q8. sets an overtravel distance of 8 mm. (Q.3 sets an overtravel distance of 0.3 in.)		
Rr	r =	features, e.g. b from the nomin	emental dimension that is used in external posses and webs, to give a radial clearance al target surface prior to a Z-axis move. s 5 mm (0.200 in).		
		Example:	R10. sets a radial clearance of 10 mm. (R.4 sets a radial clearance of 0.4 in.)		
R-r	-r =	the opposite di	to Rr, except that the clearance is applied in rection to force an internal boss or web cycle. s 5 mm (0.200 in).		
		Example:	R-10. sets a radial clearance of -10 mm. (R4 sets a radial clearance of -0.4 in.)		

Ss	S =	The work offse S1 to S6 (G54 S0 (external wo S110 to S129 (New work offse	,
		Example:	S3.
Tt	t =	This is the tool	offset number to be updated
		Example:	T20 updates tool offset number 20.
Uu	u =	tool offset or w	e limit. If this value is exceeded there is no ork offset updated and the cycle is stopped This tolerance is applied to both size and applicable.
		Example:	U2. to set the upper tolerance limit to 2mm. (U.08 to set the upper tolerance limit to 0.08in.)
Vv	V =		s is the tolerance zone where no tool offset curs. The default value of 0.
		Example:	V.5 for a tolerance zone of ± 0.5 mm. (V.02 for a tolerance zone of ± 0.02 in.)
Ww	w =	Print data	
		1. = Increme	ent the feature number only.
		2. = Increme	ent the component number, and reset the

Example: W1.

feature number.

Chapter 4

Variable outputs

This chapter lists the variable outputs that may be produced by some of the macros. You will be referred to this chapter from other chapters when a variable output is produced.

Contained in this chapter

Variable outputs - chart 1	
Variable outputs - chart 2	

	Single surface	Web/ pocket	Bore/ boss	Internal corner	External corner	4th axis	X/Y angle measure
	G65P9811	G65P9812	G65P9814	G65P9815	G65P9816	G65P9817/18	G65P9843
#185	X position	X position	X position	X position	X position		
#186	Y position	Y position	Y position	Y position	Y position		
#187	Z position						
#188	Size	Size	Size				
#189				X surface angle	X surface angle	4th angle	Angle
#190	X error	X error	X error	X error	X error		
#191	Y error	Y error	Y error	Y error	Y error		
#192	Z error			Y surface angle	Y surface angle		
#193	Size error	Size error	Size error	Y angle error	Y angle error	Height error	Height error
#194				X angle error	X angle error	Angle error	Angle error
#195	True pos. error	True pos. error	True pos. error	True pos. error	True pos. error		
#196	Metal condition	Metal condition	Metal condition				
#197	Direction indicator						
#198		1	Out	of tolerance	flag (1 to 7)	1	1
#199	Probe error flag (0 to 2)						

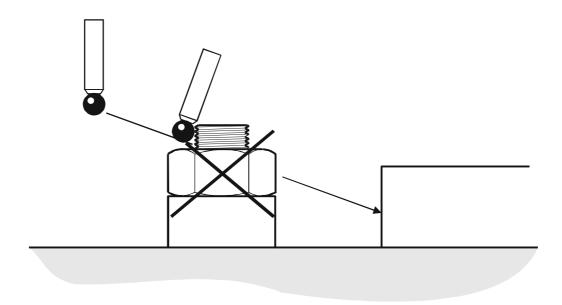
Variable outputs – chart 1

Variable outputs – chart 2

	PCD bore/ boss	Stock allowance	Angle single surface	Angle web/pocket	3-point bore/boss	Feature to feature	
	G65P9819	G65P9820	G65P9821	G65P9822	G65P9823	G65P9834	
#185	X position		X position	X position from start	X position	X inc. distance	
#186	Y position		Y position	Y position from start	Y position	Y inc. distance	
#187	PCD					Z inc. distance	
#188	Size		Size	Size from start	Size	Min. distance	
#189	Angle					Angle	
#190	X error		X error	X error	X error	X error	
#191	Y error		Y error	Y error	Y error	Y error	
#192	PCD error					Z error	
#193	Size error		Size error	Size error	Size error	Min. distance error	
#194	Angle error	Max. value				Angle error	
#195	True pos. error	Min. value	True pos. error	True pos. error	True pos. error	True pos. error	
#196	Metal condition	Variation (stock)	Metal condition	Metal condition	Metal condition	Metal condition	
#197	Hole number		Direction indicator				
#198	Out of tolerance flag (1 to 7)						
#199	Probe error flag (0 to 2)						

This page is intentionally left blank.

Chapter 5


Protected positioning cycles

When the probe moves around the workpiece, it is important that the stylus is protected against a collision with the workpiece. This chapter describes how to use macro O9810 to set up the protected positioning of the probe. After it is correctly set, the probe will stop moving in the event of a collision.

Contained in this chapter

Protected positioning (probe trigger monitor) - macro O98105-2

Protected positioning (probe trigger monitor) – macro O9810

Figure 5.1	Probe protected positionir	۱g
------------	----------------------------	----

DESCRIPTION	It is important when moving around the workpiece to protect the probe stylus against collision. When this cycle is used the machine will stop in the event of a collision.
APPLICATION	Select the probe and move to a safe plane. The probe should be made active at this point and then it can be moved

should be made active at this point and then it can be moved to a measuring position using this macro call. In the event of a collision, the machine will stop and a macro alarm PATH OBSTRUCTED will result, or an error flag #148 will be set (see Mm input).

FORMAT	G65 P9810 Xx Yy Zz [Ff] [Mm] [] denote optional inputs		
	Example: (G65 P9810 Z	210. F0.8 M0.2
INPUTS	Xx,Yy,Zz	x, y,z =	These are the target positions for the probe positioning move.
	Ff	f =	The modal feedrate for all protected positioning moves. The feedrate will be modal to this macro and subsequent feedrate calls are unnecessary unless a change of feedrate is required. The maximum safe fast feedrate established during installation should not be exceeded.
	Mm	m = 1.0	Will set a probe trigger flag (no PATH OBSTRUCTED alarm)
	#198 = 0 (no	probe trigge	er)
	#198 = 7 (pro	obe triggered	(k
EXAMPLE	G1G54X20.\	/50.	
	G43H20Z100	Э.	Move to a safe plane.
	G65P9832		Spin the probe on (includes M19) or M19 for spindle orientation.
	G65P9810Z1	10.F3000	Protected positioning move.
	G65P9811Z0	DS1	Single surface measure.

This page is intentionally left blank.

Chapter 6

Calibration cycles

Before a probe is used, it is important that you calibrate it correctly. This chapter describes the four macros that you should use for calibrating a probe. If you need to know more about calibrating a probe, you will find helpful information contained in *Chapter 1 – Getting started.*

Contained in this chapter

Calibration cycles – an overview	. 6-2
Calibrating the probe length – macro O9801	.6-3
Calibrating the stylus X and Y offsets – macro O9802	. 6-6
Calibrating the stylus ball radius – macro O9803	6-10
Calibrating the vector stylus ball radius – macro O9804	6-14
Example 1 – Full calibration in an internal feature	6-18
Example 2 – Full calibration on an external feature	6-20

Calibration cycles – an overview

Four calibration cycles are provided with the Inspection Plus software. These may be used in conjunction with one another for complete calibration of the probe. The purpose of each macro is summarised below.

Macro O9801	This is used to establish the probe length in its tool shank.
Macro O9802	This is used to establish the stylus off-centre values.
Macro O9803	This is used to establish the stylus ball radius values. It is suitable for all measuring cycles except for O9821, O9822 and O9823.
Macro O9804	This is used to establish the vector stylus ball radius values. It is suitable for <i>all</i> measuring cycles, including O9821, O9822 and O9823.

For complete calibration of a probe system, you must use macros O9801 and O9802, and either O9803 or O9804. Examples of full calibration procedures are described in the sections titled *Example 1 – Full calibration in an internal feature* and *Example 2 – Full calibration on an external feature* at the end of this chapter.

The Renishaw calibration cycles are split into separate cycles for flexibility. If, however, the calibration feature is accurately known for both size and position, e.g. a ring gauge where the size is known, and the position is accurately found using a dial test indicator, it is then possible for you to write a program which completes the full calibration procedure in one operation by calling all of the above macros.

Calibrating the probe length – macro O9801

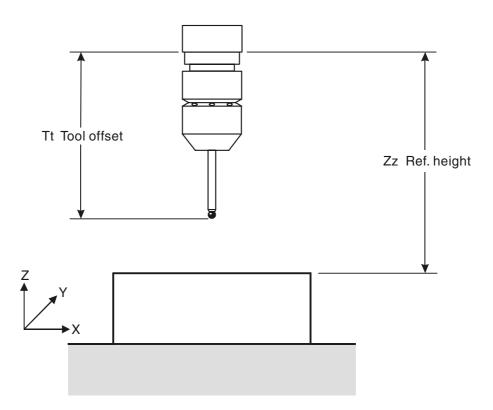


Figure 6.1 Calibrating the probe length

DESCRIPTION	The probe is positioned adjacent to a Z axis reference surface for calibration. When the cycle is completed the active probe tool offset is adjusted to the reference surface.
APPLICATION	Load an approximate tool offset. The probe should be positioned adjacent to the reference surface. When the cycle is run the surface is measured and the tool offset is reset to a new value. The probe is returned to the start position.

FORMAT	G65 P9801 Zz Tt			
	Example: G65	P9801	Z	50. T20
COMPULSORY INPUTS	Zz	Z =	=	Reference surface position
	Tt	t =	=	The active tool offset number.
OUTPUTS	The active tool of	fset w	rill k	pe set.
EXAMPLE	Set X, Y, Z values in work offset G54			offset G54
	O 0001			
	G90G80G40G0			Preparatory codes for the machine.
	G54X0Y0			Start position.
	G43 <u>H1</u> Z100.			Activate offset 1, go to 100 mm (3.94 in).
	G65P9832			Spin the probe on (includes M19) or M19 for spindle orientation.
	G65P9810Z10.F3	3000		Protected positioning move.
	G65P9801Z0 <u>T1</u>			Datum Z direction.
	G65P9810Z100.			Protected positioning move.
	G65P9833			Spin the probe off (when applicable).
	G28Z100.			Reference return.

H00	Cancel offset.

- M30 End of program
- NOTE: The tool offset must be active. The active tool offset H word number must be the same as the T input number (see above)

Calibrating the stylus X and Y offsets – macro 09802

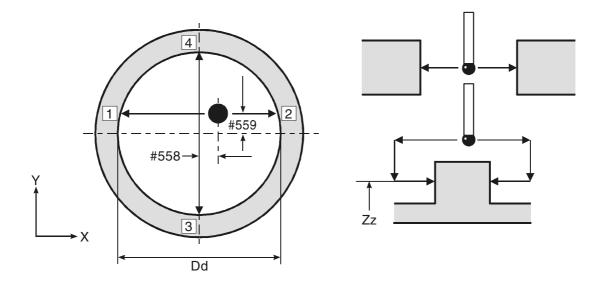
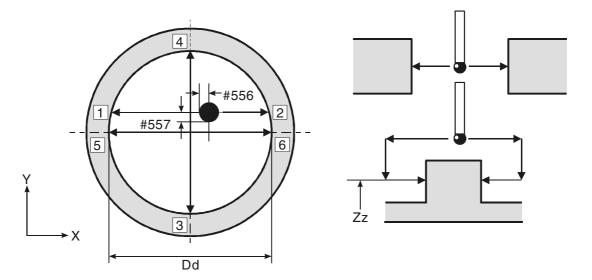


Figure 6.2 Calibrating the stylus X and Y offsets

DESCRIPTION	The probe is positioned inside a pre-machined hole at a suitable height for calibration. When this cycle is completed the stylus offset amounts in the X and Y axes are stored.
APPLICATION	Pre-machine a hole with a suitable boring bar, so that the exact centre of the hole is known. Position the probe to be calibrated inside the hole, and the spindle on the known centre position with the spindle orientation active. When the cycle is run, four measuring moves are made in order to determine the X offset, and Y offset of the stylus. The probe is then returned to the start position.


FORMAT	G65 P9802 Dd [Zz]			[] denote optional inputs
	Example: G6	65 P98	02 D	050.005 Z50.
COMPULSORY INPUTS	Dd	d	=	Nominal size of feature
OPTIONAL INPUT	Zz	Z	=	The absolute Z axis measuring position when calibrating on an external feature. If this is omitted a bore cycle is assumed.
OUTPUTS	The following o	data wi	ll be	stored as shown:
1		556 + 2) = X axis stylus offset 556 + 3) = Y axis stylus offset		
EXAMPLE	Stylus X, Y of	fset ca	alibra	ation
	A tool offset must be active before running this program			
		entre m		bored hole at the required depth. De positioned exactly on the bored
	O0002			
	G90G80G40G	i0		Preparatory codes for the machine.
	G65P9832			Spin the probe on (includes M19), or M19 for spindle orientation.
	G65P9802D50).		Calibrate in a 50 mm (1.97 in) diameter bored hole.

	G65P9833	Spin the probe off (when applicable).
	M30	End of program.
ALTERNATIVELY	Run a complete positionir follows.	ng and calibration program as
	Set the exact X,Y, Z featu (example using G54).	re positions in a work offset
	O0002	
	G90G80G40G0	Preparatory codes for the machine.
	G54X0Y0	Move to centre of the feature.
	G43H1Z100.	Activate offset 1, go to 100 mm (3.94 in) above.
	G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.
	G65P9810Z-5.F3000	Protected positioning move into hole.
	G65P9802D50.	Calibrate in a 50 mm (1.97 in) diameter bored hole.
	G65P9810Z100.F3000	Protected positioning move retract to 100 mm (3.94 in).
	G65P9833	Spin the probe off (when applicable).

G28Z100.	Reference return.
H00	Cancel offset (when applicable).
M30	End of program

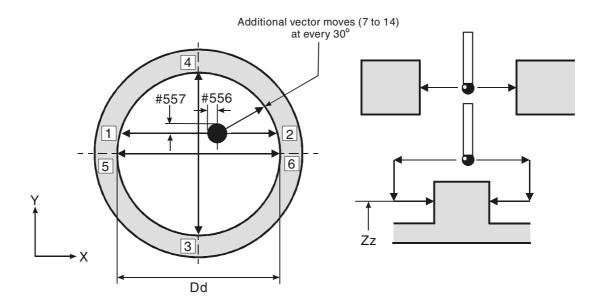
Calibrating the stylus ball radius – macro O9803

NOTE: Do not use this cycle to calibrate the radius of the stylus ball if, subsequently, you intend using vector measuring macros 09821, 09822 or 09823. The stylus ball radius must be calibrated using macro 09804 instead.

Figure 6.3 Calibrating the stylus ball radius

DESCRIPTION The probe is positioned inside a calibrated ring gauge at a suitable height for calibration. When this cycle is completed the stylus ball radius values are stored.

 APPLICATION Clamp a calibrated ring gauge on the machine table at an approximately known position. Position the probe to be calibrated inside the ring gauge on the approximate centre position, with spindle orientation active. When the cycle is run, six moves are made in order to determine the stylus ball radius values. The probe is then returned to the start position.


FORMAT	G65 P9803 Dd [Zz Ss]		[] denote optional inputs	
	Example:	G65 P9803 [050.005 Z50. S1.	
COMPULSORY INPUTS	Dd	d =	Reference gauge size	
OPTIONAL INPUTS	Zz	Z =	The absolute Z axis measuring position when calibrating on an external feature. If this is omitted a ring gauge cycle is assumed.	
	Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.	
OUTPUTS	The followir	ng data will be	e stored as shown:	
		,	stylus ball radius (XRAD) stylus ball radius (YRAD)	

EXAMPLE	Stylus ball radius calibration		
	A tool offset must be active before running this program. If your machine does not retain the offset then use the alternative example.		
	Position the probe stylus approximately on-centre in the ring gauge and at the required depth.		
	O0003		
	G90G80G40G0	Preparatory codes for the machine.	
	G65P9832	Spin the probe on (includes M19) or M19 for spindle orientation.	
	G65P9803D50.001	Calibrate in a 50.001 mm (1.9685 in) diameter ring gauge.	
	G65P9833	Spin the probe off (when applicable).	
	M30 End of program.		
ALTERNATIVELY	Run a complete positioning and calibration program as follows.		
	Set the approximate X, Y, Z feature positions in a work offset (example using G54).		
	O0003		
	G90G80G40G00	Preparatory codes for the machine.	
	G54X0Y0 Move to centre of feature.		

G43H1Z100.	Activate offset 1, go to 100 mm (3.94 in) above.
G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.
G65P9810Z-5.F3000	Protected positioning move into hole.
G65P9803D50.001	Calibrate in a 50.001 mm (1.9685 in) ring gauge.
G65P9810Z100.F3000	Protected positioning move retract to 100 mm (3.94 in).
G65P9833	Spin the probe off (when applicable).
G28Z100.	Reference return.
H00	Cancel offset (when applicable).
M30	End of program.

Calibrating the vector stylus ball radius – macro 09804

NOTE: You must use this cycle to calibrate the radius of the stylus ball if you intend using vector measuring macros O9821, O9822 or O9823 (described in Chapter 8 – Vector measuring cycles). Do not calibrate the stylus ball radius using macro O9803.

Figure 6.4 Calibrating the vector stylus ball radius

DESCRIPTION	The probe is positioned inside a calibrated ring gauge at a suitable height for calibration. When the cycle is completed the stylus ball radius values are stored. A total of 12 calibration radii at 30 degree intervals are established.
APPLICATION	Clamp a calibrated ring gauge on the machine table at an approximately known position. The probe to be calibrated is positioned inside the ring gauge on the approximate centre

	position, with spindle orientation active. When the cycle is run, 14 moves are made in order to determine the stylus ball radius values. The probe is then returned to the start position.				
FORMAT	G65 P9804	Dd [Z	z Ss	6]	[] denote optional inputs
	Example:	G65 F	980°)4 D	50.005 Z50. S1.
COMPULSORY INPUTS	Dd		d	=	Reference gauge size.
OPTIONAL INPUTS	Zz		Z	=	The absolute Z axis measuring position when calibrating on an external feature. If this is omitted a ring gauge cycle is assumed.
	Ss		S	=	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
OUTPUTS	The followi	ng data	a wil	l be	stored as shown (as O9803):
	•	,			stylus ball radius (XRAD) stylus ball radius (YRAD)

Additional vector calibration data:

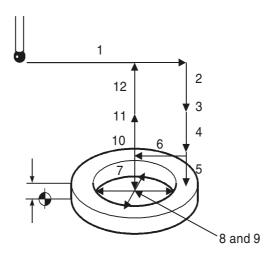
#566 (556 + 10) = 30 degree stylus ball radius (VRAD) #567 (556 + 11) = 60 degree stylus ball radius (VRAD) #568 (556 + 12) = 120 degree stylus ball radius (VRAD) #569 (556 + 13) = 150 degree stylus ball radius (VRAD) #570 (556 + 14) = 210 degree stylus ball radius (VRAD) #571 (556 + 15) = 240 degree stylus ball radius (VRAD) #572 (556 + 16) = 300 degree stylus ball radius (VRAD) #573 (556 + 17) = 330 degree stylus ball radius (VRAD)

EXAMPLE Vector stylus ball radius calibration

A tool offset must be active before running this program. If your machine does not retain the offset, then use the alternative example.

Position the probe approximately on-centre in the ring gauge and at the required depth.

O0004


G90G80G40G0	Preparatory codes for the machine.
G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.
G65P9804D50.001	Calibrate in a 50.001 mm (1.9685 in) diameter ring gauge.
G65P9833	Spin the probe off (when applicable).
M30	End of program.

ALTERNATIVELY	Run a complete positioning and calibration program as follows.		
	Set the approximate X, Y, Z feature positions in a work offset (example using G54).		
	O0004		
	G90G80G40G0	Preparatory codes for the machine.	
	G54X0Y0	Move to centre of feature.	
	G43H1Z100.	Activate offset 1, go to 100 mm (3.94 in) above.	
	G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.	
	G65P9810Z-5.F3000	Protected positioning move into the hole.	
	G65P9804D50.001	Calibrate in a 50.001 mm (1.9685 in) diameter ring gauge.	
	G65P9810Z100.F3000	Protected positioning move retract to 100 mm (3.94 in).	
	G65P9833	Spin the probe off (when applicable).	
	G28Z100.	Reference return.	
	H00	Cancel offset (when applicable).	
	M30	End of program.	

Example 1 – Full calibration in an internal feature

This example describes how to carry out full calibration of the probe in an internal feature using macros O9801, O9802 and O9804, using a 50.001mm (1.9685in) diameter ring gauge, with a known centre position and top face height value.

The approximate probe length must be stored in the tool offset register before running this program. Set the exact X, Y, and Z feature positions in a work offset (example using G54).

O0006

G90G80G40G0 Preparatory codes for the machine.
1. G54X35.Y0 Move off centre of feature for height setting.
2. G43H1Z100. Activate offset 1, go to 100 mm (3.94 in) above.

3. G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.
4. G65P9810Z30.F3000	Protected positioning move above reference surface.
5. G65P9801Z20.006T20.	Calibrate the probe length. Surface at 20.006 mm (0.7876 in)
6. G65P9810X0Y0	Protected positioning move to centre.
7. G65P9810Z5.	Protected positioning move into hole.
8. G65P9802D50.	Calibrate in a 50 mm (1.97 in) diameter bored hole to establish the X,Y stylus offset.
9. G65P9804D50.001	Calibrate in a 50.001 mm (1.9685 in) diameter ring gauge to establish the ball radius values, including the vector directions.
10. G65P9810Z100.F3000	Protected positioning move retract to 100 mm (3.94 in).
11. G65P9833	Spin the probe off (when applicable).
12. G28Z100.	Reference return.
H00	Cancel offset (when applicable)
M30	End of program

Example 2 – Full calibration on an external feature

This example describes how to carry out full calibration of the probe on an external feature using macros O9801, O9802 and O9804, using a 50.001 mm (1.9685 in) diameter pin gauge, with a known centre position and a Z-reference surface.

The approximate probe length must be stored in the tool offset register before running this program. Set the exact X, Y pin feature positions and Z surface height in a work offset (example using G54).

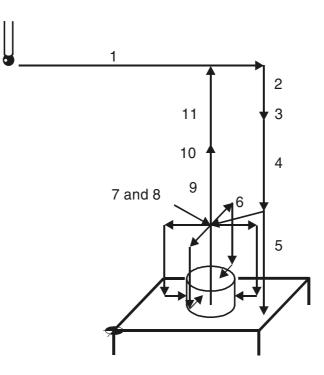


Figure 6.6 Full calibration on an external feature

	O0006	
	G90G80G40G0	Preparatory codes for the machine.
1.	G54X135.Y100.	Move to centre of feature for height setting.
2.	G43H1Z100.	Activate offset 1, go to 100 mm (3.94 in) above.
3.	G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.
4.	G65P9810Z30.F3000	Protected positioning move above reference surface.
5.	G65P9801Z0.T20.	Calibrate the probe length. Z surface at zero.
6.	G65P9810X100.Y100.	Protected positioning move to centre.
7.	G65P9802D50.001Z10.	Calibrate on a 50.001 mm (1.9685 in) diameter pin gauge to establish the X,Y stylus offset.
8.	G65P9804D50.001Z10.	Calibrate on a 50.001 mm (1.9685 in) diameter pin gauge to establish the ball radius values, including the vector directions.
9.	G65P9810Z100.F3000	Protected positioning move retract to 100 mm (3.94 in).

10. G65P9833	Spin the probe off (when applicable).
11. G28Z100.	Reference return.
H00	Cancel offset (when applicable)
M30	End of program

Chapter 7

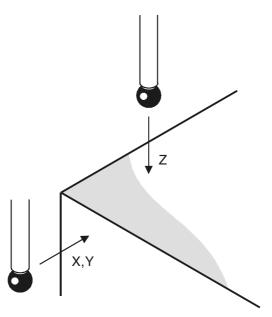
Measuring cycles

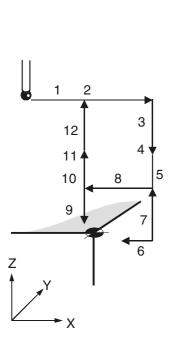
This chapter describes how to use the non-vector measuring cycle macros. The probe stylus ball radius must be calibrated using either macro O9803 or O9804 (*see Chapter 6 – Calibration cycles*) before using the macros described here.

Contained in this chapter

X Y Z single surface measurement – macro O9811	7-2
Web / pocket measurement – macro O9812	7-6
Bore / boss measurement – macro O9814	7-12
Finding an internal corner – macro O9815	7-17
Finding an external corner – macro O9816	7-22

X Y Z single surface measurement – macro O9811




Figure 7.1 Measurement of a single surface

DESCRIPTION	This cycle measures a surface to establish the size or position.		
APPLICATION	The probe should be positioned with its tool offset active adjacent to the surface. The cycle measures the surface and returns to the start position.		
	There are two possibilities as follows:		
	 The surface can be treated as a size, where the tool offset is updated in conjunction with the Tt and the Hh input. 		

		ne purpo	eated as a reference surface use of adjusting a work offset using s.	
FORMAT	G65 P9811 Xx or Yy or Zz [Ee Ff Hh Mm Qq Ss Tt Uu Vv Ww] [] denotes optional inputs			
	•	9811 X J.5V.5W	50. E0.005 F0.8 H0.2 M.2 Q10. S1. 2.	
COMPULSORY INPUTS	Xx or Yy or Zz	x,y,z =	The surface position or size.	
OPTIONAL INPUTS	Hh	h =	The tolerance value of a feature dimension being measured.	
	Mm	m =	The true position tolerance of a feature. A cylindrical zone about the theoretical position.	
	Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe will then travel beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis.	

Ss	S	=	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Tt	t	=	This is the tool offset number to be updated .
Ww	W	=	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
For optional inpu	uts E	e, Ff	, Uu, and Vv see <i>Chapter 3</i> –

Optional inputs

EXAMPLE

Figure 7.2 Probe movements

1. T01M06

G65P9832

2.

3.

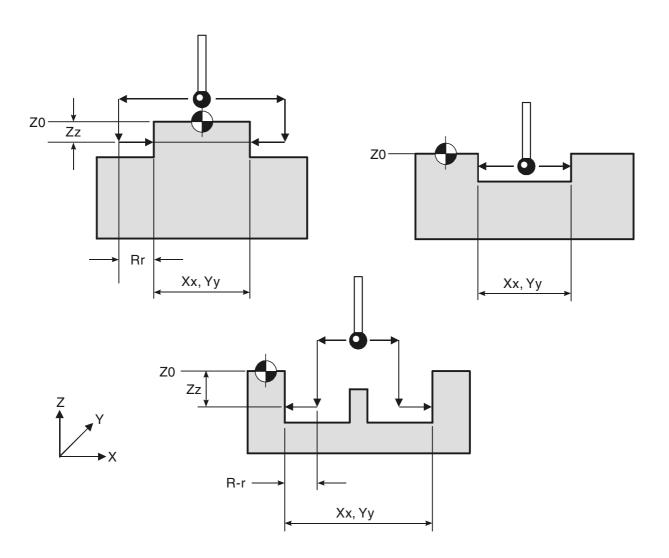
4.

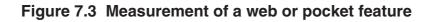
5.

7.

- Select the probe.
- G54X-40.Y20. Start position.
 - G43H1Z100. Activate offset 1, go to 100 mm (3.94 in).

Spin the probe on (includes M19), or M19 for spindle orientation.

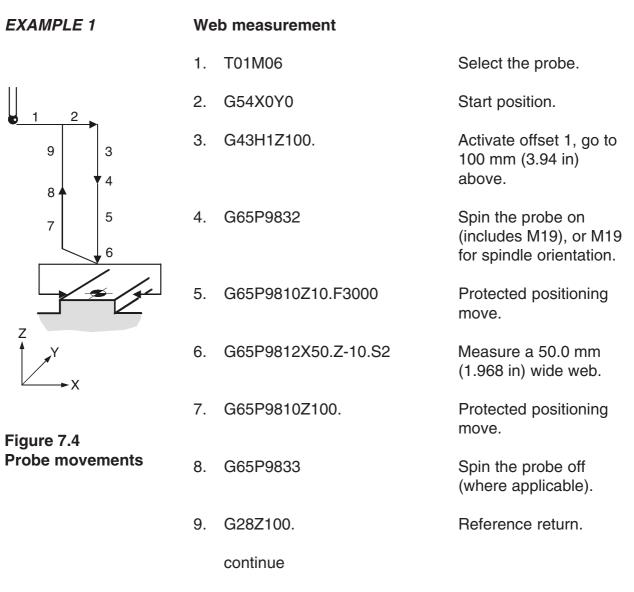

- G65P9810Z-8.F3000 Protected positioning move to start position.
- 6. G65P9811X-50.T10. Single surface measure.
 - G65P9810Z10. Protected positioning move.
- 8. G65P9810X-60. Protected positioning move.
- 9. G65P9811Z0T11 Single surface measure.
- 10. G65P9810Z100. Protected positioning move.
 - 11. G65P9833Spin the probe off (where
applicable).


12. G28Z100. Reference return.

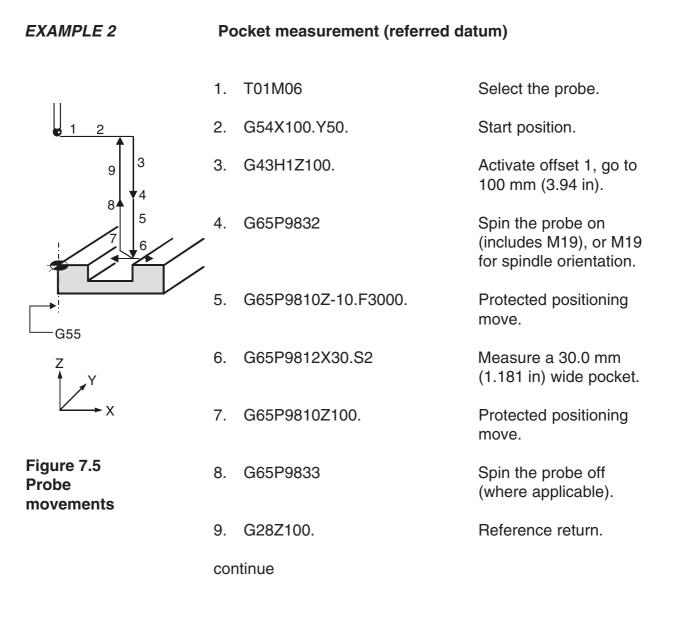
continue

The tool radius offset (10) is updated by the error of surface position.

Web / pocket measurement – macro O9812

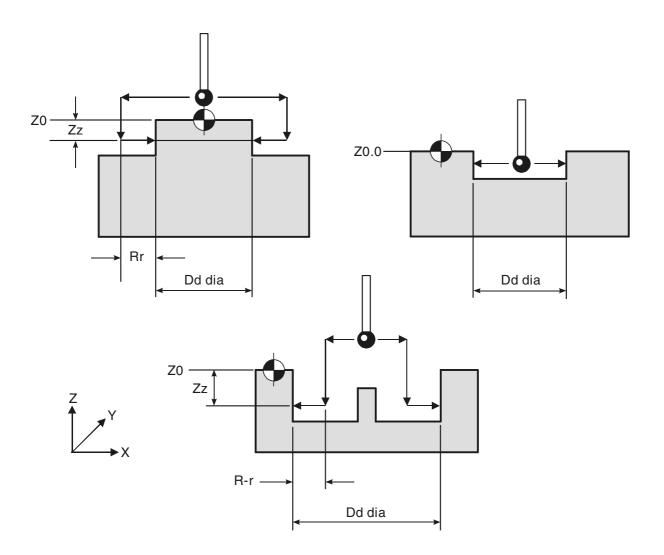


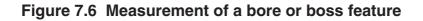
DESCRIPTION This cycle measures a web or pocket feature. It uses two measuring moves along the X Y axis.


APPLICATION	and a suitable po	ositior	n in	expected centre line of the feature the Z axis with the probe and probe le with suitable inputs as described.
FORMAT	or G65 P9812 Yy [I or G65 P9812 Xx Z or	Ee Ff Ee Ff Zz [Ee	Hh Hh Ff I	Mm Qq Rr Ss Tt Uu Vv Ww] Mm Qq Rr Ss Tt Uu Vv Ww] Hh Mm Qq Rr Ss Tt Uu Vv Ww]
	Example: G65	- P981	2 X	Hh Mm Qq Rr Ss Tt Uu Vv Ww] 50. Z100. E0.005 F0.8 H0.2 M.2 . T20. U.5 V.5 W2.
COMPULSORY INPUTS	Xx or Yy		=	Nominal size of feature when measured in the X axis. Nominal size of feature when measured in the Y axis.
	Zz	Z	=	The absolute Z axis position when measuring a web feature. If this is omitted a pocket cycle is assumed.
OPTIONAL INPUTS	Hh	h	=	The tolerance value of a feature dimension being measured.
	Mm	m	=	The true position tolerance of a feature. A cylindrical zone about the theoretical position.

Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe will then travel beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis.
Rr	r =	This is an incremental dimension that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in).
R-r	-r =	This is similar to Rr, except that the clearance is applied in the opposite direction to force an internal web cycle. Default value is 5 mm (0.200 in).
Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Tt	t =	This is the tool offset number to be updated.

	Ww	w =	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
	For optional inputs		, Uu, and Vv, see <i>Chapter 3</i> –
OUTPUTS	The feature mease #199 (see <i>Chapte</i>		ts will be stored in variables #185 to ariable outputs).




The feature centre line in the X axis is stored in the work offset 02 (G55).

The error of centre line is referred to the datum point X0 and the revised X0 position is set in work offset 02(G55).

Bore / boss measurement – macro O9814

DESCRIPTION This cycle measures a bore or boss feature. It uses four measuring moves along the X Y axis.

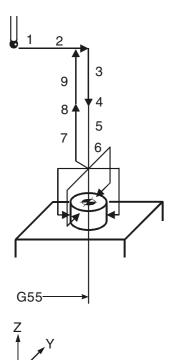
APPLICATION	Position the probe to the expected centre line of the feature and a suitable position in the Z axis with the probe and probe offset active. Run the cycle with suitable inputs as described.				
FORMAT	G65 P9814	Dd [E	e Ff	Hh	Mm Qq Rr Ss Tt Uu Vv Ww]
	or				
	G65 P9814 [] denotes		-		Hh Mm Qq Rr Ss Tt Uu Vv Ww]
	Example:				50.005 Z100. E0.005 F0.8 H0.2 . S1. T20. U.5 V.5 W2.
COMPULSORY INPUTS	Dd		d	=	Nominal size of the feature.
	Zz		Z	=	The absolute Z axis position when measuring a boss feature. If this is omitted a bore cycle is assumed.
OPTIONAL INPUTS	Hh		h	=	The tolerance value of a feature dimension being measured.
	Mm		m	=	The true position tolerance of a feature. A cylindrical zone about the theoretical position.
	Qq		q	=	The probe overtravel distance for use when the default values are unsuitable. The probe will then travel beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis.

Rr	r	=	This is an incremental dimension that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in).
R-r	-r	=	This is similar to Rr, except that the clearance is applied in the opposite direction to force an internal boss cycle. Default value is 5 mm (0.200 in).
Ss	S	=	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Tt	t	=	This is the tool offset number to be updated.
Ww	W	=	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.

For optional inputs Ee, Ff, Uu, and Vv, see *Chapter 3 – Optional inputs.*

Select the probe.

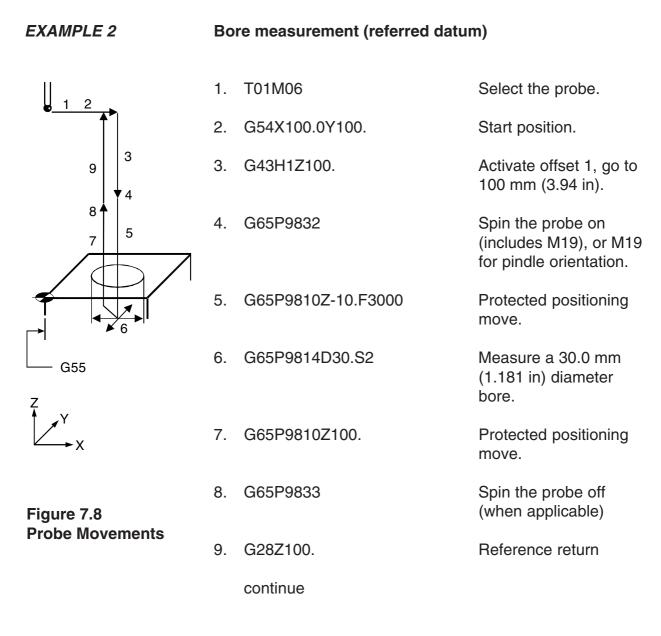
OUTPUTS


The feature measurements will be stored in variables #185 to #199 (see *Chapter 4 – Variable outputs*).

EXAMPLE 1

Boss measurement

T01M06


1.

2. G54X0Y0 Start position. G43H1Z100. Activate offset 1, go to З. 100 mm (3.94 in). 4. G65P9832 Spin the probe on (includes M19), or M19 for spindle orientation. 5. G65P9810Z10.F3000 Protected positioning move. 6. G65P9814D50.Z-10.S2.R10. Measure a 50.0 mm (1.968 in) diameter boss. 7. G65P9810Z100. Protected positioning move. Spin the probe off 8. G65P9833 (when applicable). Reference return. 9. G28Z100. continue

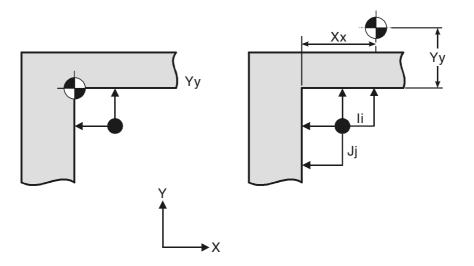
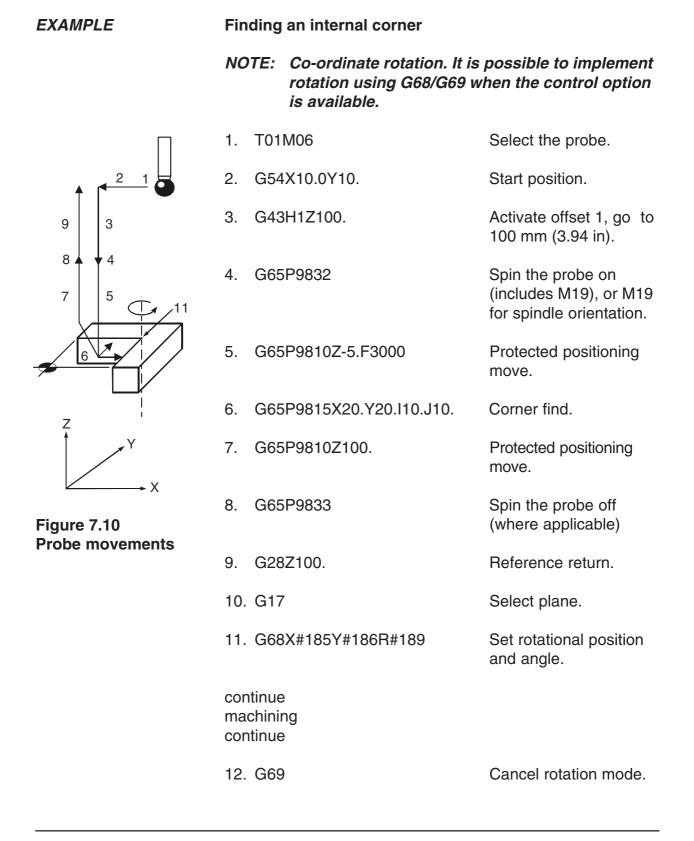

The feature centre line in the X and Y axis is stored in the work offset 02(G55).

Figure 7.7 Probe movements

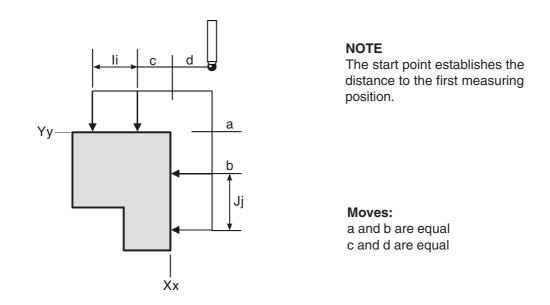
The error of centre line is referred to the datum point X0, Y0 and the revised X0, Y0 position is set in work offset 02(G55).

Finding an internal corner – macro O9815

Figure 7.9 Finding an internal corner position


DESCRIPTION	This cycle is used to establish the corner position of a feature.			
	<i>NOTE:</i> A true corner intersection can be found, even if the corner is not 90 degrees			
APPLICATION	The probe must be positioned with its tool offset active at a start position as shown in the figure above. The probe measures the Y axis surface first and then measures the X axis surface. The probe then returns to the start position.			
	Errors occurring during the cycle return the probe to the start position.			

	NOTE: If the I and J inputs are missing, only two gauging moves occur. The corner feature is assumed to be parallel to the axes.				
			οςςι	ır ar	re missing then three gauging nd the corner feature is assumed s.
FORMAT		315 Xx Yy e optiona	-	-	Mm Qq Ss Uu Ww]
	Example	e: G65 F S1. U			100. Y100. B2. I10. J10. M.2 Q10.
	NOTE:	l and J ı	nus	t be	stated in this order if used.
COMPULSORY INPUTS	Xx		х	=	Nominal corner position X axis.
	Yy		у	=	Nominal corner position Y axis.
OPTIONAL INPUTS	Bb		b	=	Angle tolerance. This applies to both X and Y surfaces. It is equal to half the total tolerance, e.g. ± 0.25 degrees = B.25 tolerance.
	li		i	=	Incremental distance to the second probe position along the X axis (positive value is assumed) (default no move)
	Jj		j	=	Incremental distance to the second probe position along the Y axis (positive value is assumed) (default no move).


Mm	m =	The true position tolerance of a feature. A cylindrical zone about the theoretical position.
Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe will then travel beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis.
Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Ww	w =	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.

For optional inputs Uu, see *Chapter 3 – Optional inputs.*

	NOTE:	<i>#189 is the angle of the X surface and is measured from the X+ axis direction. #192 is the angle of the Y surface and is also measured from the X+ axis direction.</i>
	Mm) Uu)	See Appendix H – Output flow for the general output structure.
	Ss	The work offset stated will be set such that the nominal X Y positions will be corrected.
	1. 2. 3. 4.	Feature no. +1 lowing will be output: Corner positions Tolerance if used Error in the X axis Error in the Y axis Work offset no. if used
	W2.	Component no. +1 feature no. 1
OUTPUTS		ature measurements will be stored in variables #185 9 (see <i>Chapter 4 – Variable outputs</i>).

Finding an external corner – macro O9816

Figure 7.11 Finding an external corner

DESCRIPTION	This cycle is used to establish the corner position of a
	feature.

NOTE: A true corner intersection can be found, even if the corner is not 90 degrees.

APPLICATIONThe probe must be positioned with its tool offset active at a
start position as shown in the diagram. The probe measures
the Y axis surface first and then measures the X axis surface.
The probe then returns to the start position.

Errors occurring during the cycle return the probe to the start position.

NOTE: If the I and J inputs are missing, only two gauging moves occur. The corner feature is assumed to be parallel to the axes.

If either I or J are missing then three gauging moves occur and the corner feature is assumed to be 90 degrees.

FORMATG65 P9816 Xx Yy [Bb li Jj Mm Qq Ss Uu Ww][] denote optional inputs

Example: G65 P9816 X100. Y100. B2. I10. J10. M.2 Q10. S1. U.5W2.

NOTE: I and J must be stated in this order if used.

COMPULSORY INPUTS	Xx	х	=	Nominal corner position X axis.
	Үу	у	=	Nominal corner position Y axis.
OPTIONAL INPUTS	Bb	b	=	Angle tolerance. This applies to both X and Y surfaces. It is equal to half the total tolerance, e.g. ± 0.25 degrees = B.25 tolerance.
	li	i	=	Incremental distance to the second probe position along the X axis (a positive value is assumed). The default is no move.
	Jj	j	=	Incremental distance to the second probe position along the Y axis (a positive value is assumed). The default is no move.

Mm	m =	The true position tolerance of a feature. A cylindrical zone about the theoretical position.
Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe will then travel beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis).
Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Ww	w =	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.

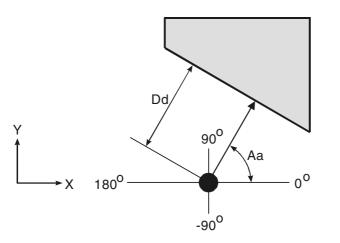
For optional inputs Uu, see *Chapter 3 – Optional inputs*.

OUTPUTS	The feature measurements will be stored in variables #185 to #199 (see <i>Chapter 4 – Variable outputs</i>).				
	W2.	Component no. + 1, feature no. set to 1.			
	W1.	Feature no. +1			
	The fol	lowing will be output:			
	1.	Corner positions			
	2.	Tolerance if used			
	3.	Error in the X axis			
	4.	Error in the Y axis			
	5.	Work offset no. if used			
	Ss	The work offset stated will be set such that the nominal X Y positions will be corrected.			
	Mm) Uu)	See Appendix H – Output flow for the general output structure.			
	NOTE:	#189 is the angle of the X surface and is measured from the X+ axis direction. #192 is the angle of the Y surface and is also measured from the X+ axis direction.			

EXAMPLE	Finding an external corner						
	NOTE:	<i>Co-ordinate rotation. It is possible to implement rotation using G68/G69 when the control option is available.</i>					
. 2 1	1. T0 ⁻	1M06	Select the probe.				
	2. G5	4X-10.Y-10.	Start position.				
	3. G4	3H1Z100.	Activate offset 1, go to 100 mm (3.94 in).				
7 5 11	4. G6	5P9832	Spin the probe on (includes M19), or M19 for spindle orientation.				
6	5. G6	5P9810Z-5.F3000	Protected positioning move.				
Z Y X	6. G6	5P9816X0Y0I10.J10.	Corner find.				
	7. G6	5P9810Z100.	Protected positioning move.				
	8. G6	5P9833	Spin the probe off (where applicable).				
Figure 7.12	9. G2	8Z100.	Reference return.				
Probe movements	10. G1	7	Select plane.				
11		8X#185Y#186R#189	Set corner position and angle.				
	continu Machin						
12. G69		9	Cancel co-ordinate rotation mode.				

Chapter 8

Vector measuring cycles


This chapter describes how to use the vector measuring cycle macros. The probe stylus ball radius must be calibrated using macro O9804 (see *Chapter 6 – Calibration cycles*) before using the macros described here. Do *not* use macro O9803 to calibrate the probe stylus.

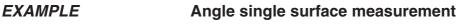
Contained in this chapter

Angle single surface measurement – macro O9821	. 8-2
Angle web pocket measurement – macro O9822	. 8-7
3-point bore / boss measurement - macro O9823	8-13

Angle single surface measurement – macro 09821

NOTE: The probe must have recently been calibrated using the vector stylus ball radius macro O9804 (described in Chapter 6 – Calibration cycles) before using this cycle. Do not use macro O9803 to calibrate the probe.

NOTE Angles in the range ±180 deg. +Aa angles (counter-clockwise)


Figure 8.1 Measuring an angled surface

DESCRIPTION	This cycle measures a surface feature using one vectored measuring move along the X Y axis.			
APPLICATION	Position the probe to the expected reference point of the feature and a suitable position in the Z axis with the probe and probe offset active. Run the cycle with suitable inputs as described.			
FORMAT	G65 P9821 Aa Dd [Ee Ff Hh Mm Qq Ss Tt Uu Vv Ww] [] denote optional inputs			
	Example:	G65 P9821 A45.005 D50.005 E0.005 F0.8 H0.2 M0.2 Q10. S1. T20. U.5 V.5 W2.		

COMPULSORY INPUTS	Aa	a =	Direction of probe measurement measured from the X+ axis direction.
	Dd	d =	Nominal distance to the surface (radial).
OPTIONAL INPUTS	Hh	h =	The tolerance value of a feature dimension being measured.
	Mm	m =	The true position tolerance of a feature. A cylindrical zone about the theoretical position.
	Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.4 in) in the X,Y axis.
	Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.

Tt	t =	This is the tool offset number to be updated
Ww	w =	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
For optional inpu <i>Optional inputs</i>	ts Ee, Fi	f, Uu, and Vv, see <i>Chapter 3</i> –

OUTPUTS The feature measurements will be stored in variables #185 to #199 (see *Chapter 4 – Variable outputs*).

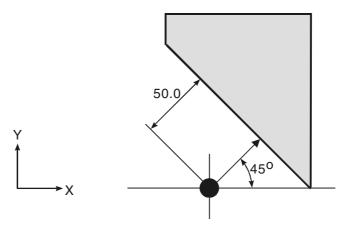
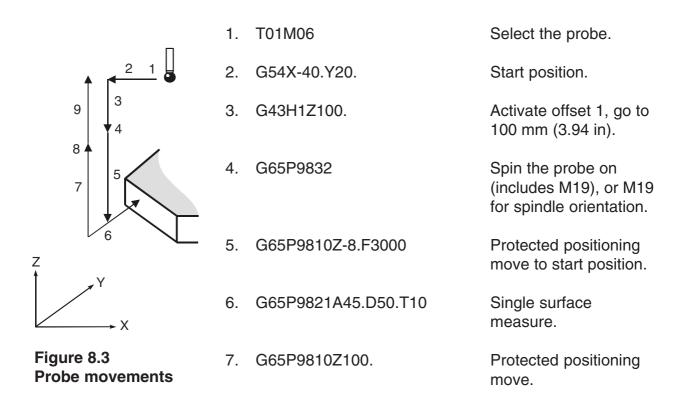



Figure 8.2 Measuring a single angled surface

Manual No. H-2000-6222

8.	G65P9833	Spin the probe off (when applicable).

9. G28Z100. Reference return.

The tool radius offset (10) is updated by the error of surface position.

Angled web or pocket measurement – macro 09822

NOTE: The probe must have recently been calibrated using the vector stylus ball radius macro O9804 (described in Chapter 6 – Calibration cycles) before using this cycle. Do not use macro O9803 to calibrate the probe.

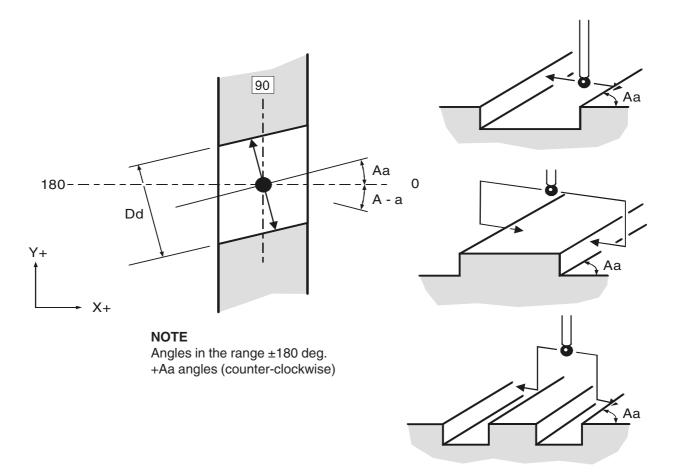


Figure 8.4 Measuring an angled web or pocket

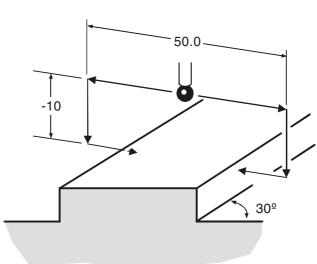
DESCRIPTION

This cycle measures a web or pocket feature using two vectored measuring moves along the X Y axis.

Vector measuring cycles

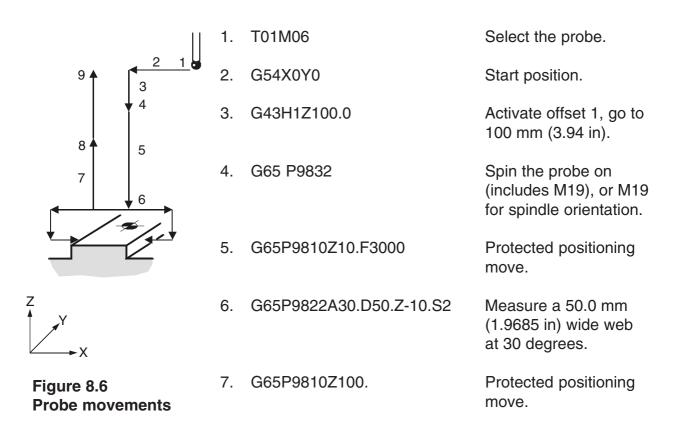
APPLICATION	Position the probe to the expected centre line of the feature and a suitable position in the Z axis with the probe and probe offset active. Run the cycle with suitable inputs as described.			
FORMAT	G65 P9822 Aa Dd [Ee Ff Hh Mm Qq Rr Ss Tt Uu Vv Ww]			
	or			
	G65 P9822 Aa Do [] denote optiona		-	Ff Hh Mm Qq Rr Ss Tt Uu Vv Ww]
				5.005 D50.005 Z50. E0.005 F0.8 . R10. S1. T20. U.5 V.5 W2.
COMPULSORY INPUTS	Aa	а	=	Angle of the surface to be measured from the X+ axis direction.
	Dd	d	=	Nominal size of the feature.
	Zz	Z	=	The absolute Z axis position when measuring a web feature. If this is omitted a pocket cycle is assumed.
OPTIONAL INPUTS	Hh	h	=	The tolerance value of a feature dimension being measured.
	Mm	m	=	The true position tolerance of a feature. A cylindrical zone about the theoretical position.

Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis.
Rr	r =	This is an incremental dimension that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in).
R-r	-r =	This is similar to Rr, except that the clearance is applied in the opposite direction to force an internal web cycle. Default value is 5 mm (0.200 in).
Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Tt	t =	This is the tool offset number to be updated


Vector measuring cycles

Ww

Print data
1. = Increment the feature number only.
2. = Increment the component number, and reset the feature number.


For optional inputs Ee, Ff, Uu, and Vv, see Chapter 3 - Optional inputs

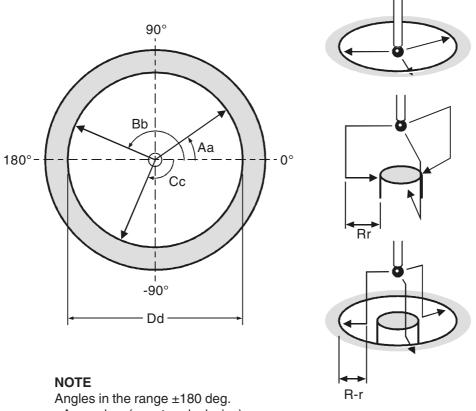
OUTPUTS The feature measurements will be stored in variables #185 to #199 (see *Chapter 4 – Variable outputs*).

EXAMPLE Angle web measurement

Vector measuring cycles

8. G65P9833

Spin the probe off (when applicable).


9. G28Z100. Reference return

Continue

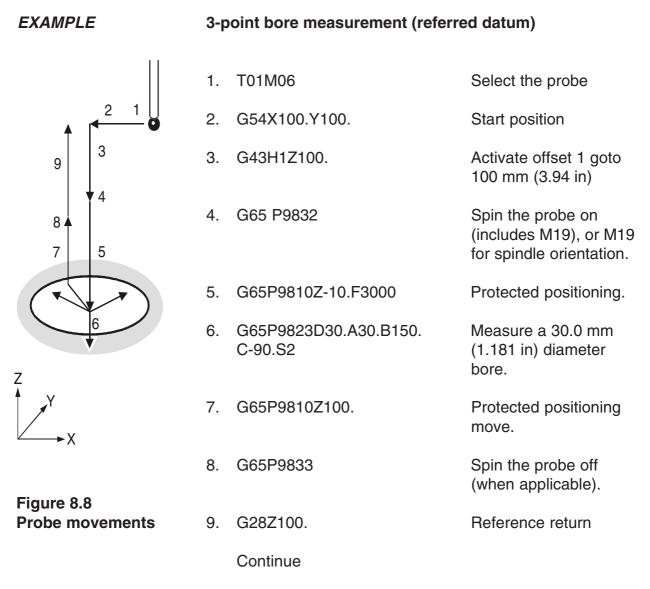
The feature centre line in the X axis is stored in the work offset S02(G55).

3-point bore or boss measurement – macro 09823

NOTE: The probe must have recently been calibrated using the vector stylus ball radius macro O9804 (described in Chapter 6 – Calibration cycles) before using this cycle. Do not use macro O9803 to calibrate the probe.

+Aa angles (counter-clockwise)

Figure 8.7 3-point bore or boss measurement


DESCRIPTION This cycle measures a bore or boss feature using three vectored measuring moves along the X Y axis.

APPLICATION FORMAT	Position the probe to the expected centre line of the feature and a suitable position in the Z axis with the probe and probe offset active. Run the cycle with suitable inputs as described. G65 P9823 Aa Bb Cc Dd [Ee Ff Hh Mm Qq Rr Ss Tt Uu Vv Ww]				
	or	-			
	G65 P9823 Aa Bl [] denote optiona			z [E	e Ff Hh Mm Qq Rr Ss Tt Uu VvWw]
	Example:		Ξ.0	05 F	A45.005 B150.0 C35.005 D50.005 O.8 H0.2 M0.2 Q10. R10. S1. W2.
COMPULSORY INP	PUTS Aa	e	a	=	The first angle for vector measurement, measured from the X+ axis direction.
	Bb	k	D	=	The second angle for vector measurement, measured from the X+ axis direction.
	Сс	C	C	=	The third angle for vector measurement, measured from the X+ axis direction.
	Dd	C	b	=	Nominal size of feature, measured from the X+ axis direction.
	Zz	Z	Ζ	=	The absolute Z axis position, measured from the X+ axis direction, when measuring a boss feature. If this is omitted, a bore cycle is assumed.
OPTIONAL INPUTS	B Hh	ł	ſ	=	The tolerance value of a feature dimension being measured.

Mmm =The true position tolerance of a feature. A cylindrical zone about the theoretical position.Qqq =The probe overtravel distance for use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X, Y axis.Rrr=This is an incremental dimension that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in).R-r-r=This is similar to Rr, except that the clearance is applied in the opposite direction to force an internal boss cycle. Default value is 5 mm (0.200 in).Sss=The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offset = active work offset + error. New external offset = external offset + error.				
 use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X, Y axis. Rr r = This is an incremental dimension that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in). R-r -r = This is similar to Rr, except that the clearance is applied in the opposite direction to force an internal boss cycle. Default value is 5 mm (0.200 in). Ss s = The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external 	Mm	m	=	feature. A cylindrical zone about
 that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in). R-r -r = This is similar to Rr, except that the clearance is applied in the opposite direction to force an internal boss cycle. Default value is 5 mm (0.200 in). Ss s = The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external 	Qq	q	=	use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm
the clearance is applied in the opposite direction to force an internal boss cycle. Default value is 5 mm (0.200 in). Ss s = The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external	Rr	r	=	that is used in external features, e.g. bosses and webs, to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm
be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external	R-r	-r	=	the clearance is applied in the opposite direction to force an internal boss cycle. Default value
	Ss	S	=	be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external

Tt	t =	This is the tool offset number to be updated.
Ww	w =	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
For optional inpu <i>Optional inputs</i>	ts Ee, Fi	f, Uu, and Vv, see <i>Chapter 3</i> –

OUTPUTS The feature measurements will be stored in variables #185 to #199 (see *Chapter 4 – Variable outputs*).

The error of centre line is referred to the datum point X0,Y0 and the revised X0,Y0 position is set in work offset 02(G55).

This page is intentionally left blank.

Chapter 9

Additional cycles

The Inspection Plus software contains a number of macro cycles that cannot be categorised under the headings used in previous chapters of this manual (*Chapters 5* to *8* inclusive). This chapter describes how to use these cycles.

Contained in this chapter

9-2
9-6
9-10
9-14
9-20
9-23
9-26
9-27
9-28
9-34
9-40
9-42
9-46

4th axis X measurement – macro O9817

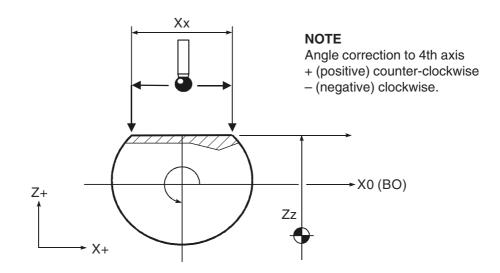


Figure 9.1 4th axis X measurement

DESCRIPTION	The purpose of this macro is to find the slope of a surface between two points Z1 and Z2 and make the necessary correction by indexing a 'rotary axis' to compensate. It also updates a 'work zero point' for that axis if required.				
APPLICATION	The 4th axis must be positioned to the expected angular position of the feature (i.e. surface normal to the Z axis). The cycle finds the error of surface position, and then adjusts the axis work offset or checks a tolerance.				
FORMAT	G65 P9817 Xx Zz [Qq Bb Ss Ww] [] denotes optional inputs.				
	Example: G65 P9817 X100. Z50. Q10. B2. S1. W2.				

COMPULSORY INPUTS	Хх	х	=	The X axis distance between Z1 and Z2 measurement positions.
	Zz	Z	=	The Z axis expected surface position.
OPTIONAL INPUTS	Bb	b	=	Set a tolerance on the angular position of the feature. It is equal to half the total tolerances, e.g. component dimension 45 degrees (±0.25 degrees) the 4th axis would be positioned to 45 degrees and B.25 tolerance.
	Qq	q	=	The probe overtravel distance for use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 10mm (0.4in).
	Ss	S	=	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
	Ww	W	=	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.

OUTPUTS	193 will show (Z1 - Z2) 194 will show angle cor 189 will show 4th axis n	rection value
	the 4th axis sy changed. It wil	ines and application may require stem variable number to be I be achieved by editing macro e macro is installed to suit your
	Edit as follows: 3 = 4 (4th axis number)	change axis number as required.
	exis direction change Edit as follows: Edit = 1(1 = clockwise, and equired.	d -1 = counter-clockwise) change as

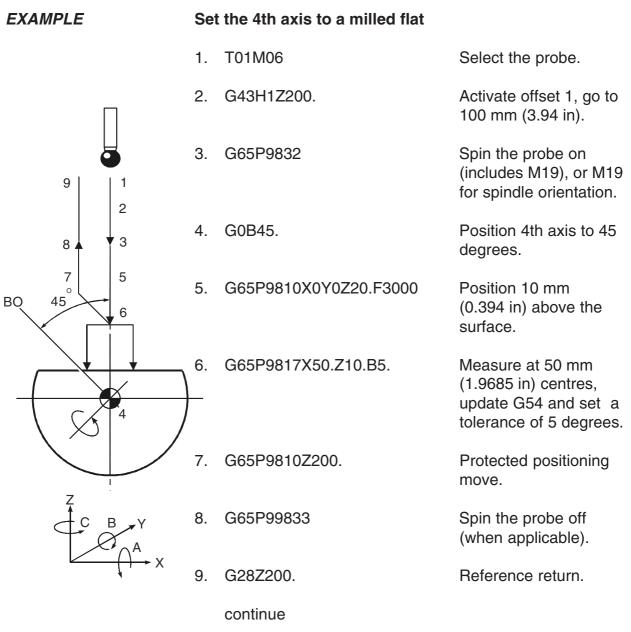


Figure 9.2 Probe movements

4th axis Y measurement – macro O9818

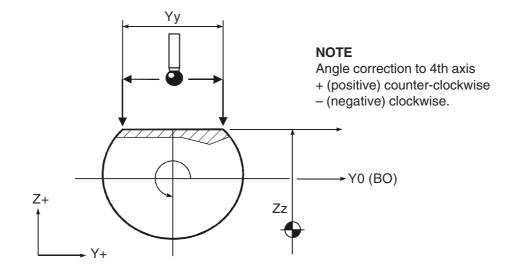


Figure 9.3 4th axis Y measurement

DESCRIPTION The purpose of this macro is to find the slope of a surface between two points Z1 and Z2 and make the necessary correction by indexing a 'rotary axis' to compensate. It also updates a 'work zero point' for that axis if required.

APPLICATION The 4th axis must be positioned to the expected angular position of the feature, i.e. surface normal to the Z axis. The cycle finds the error of surface position, and then adjusts the axis work offset or checks a tolerance.

FORMAT	G65 P9818 Yy Zz [Qq Bb Ss Ww] [] denotes optional inputs				
	Example:	G65 P9818	Y100. Z50. Q10. B2. S1. W2.		
COMPULSORY INPUTS	Үу	у =	The Y axis distance between Z1 and Z2 measurement positions.		
	Zz	Z =	The Z axis expected surface position.		
OPTIONAL INPUTS	Bb	b =	Set a tolerance on the angular position of the feature. It is equal to half the total tolerances, e.g. component dimension 45 degrees \pm .25 degrees the 4th axis would be positioned to 45 degrees and B.25 tolerance.		
	Qq	q =	The probe overtravel distance for use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 10 mm (0.4 in).		
	Ss	S =	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = External offset + error.		

Ww Print data W = 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number. #193 will show (Z1 - Z2) value **OUTPUTS** #194 will show angle correction value #189 will show 4th axis measured position NOTE: Different machines and application may require the 4th axis system variable number to be changed. It is achieved by editing macro O9818 when the macro is installed to suit your machine. Edit as follows: #3 = 4 (4th axis number) change axis number as required. Axis direction change Edit as follows: #4 = 1(1 = clockwise, and -1 = counter-clockwise) change asrequired.

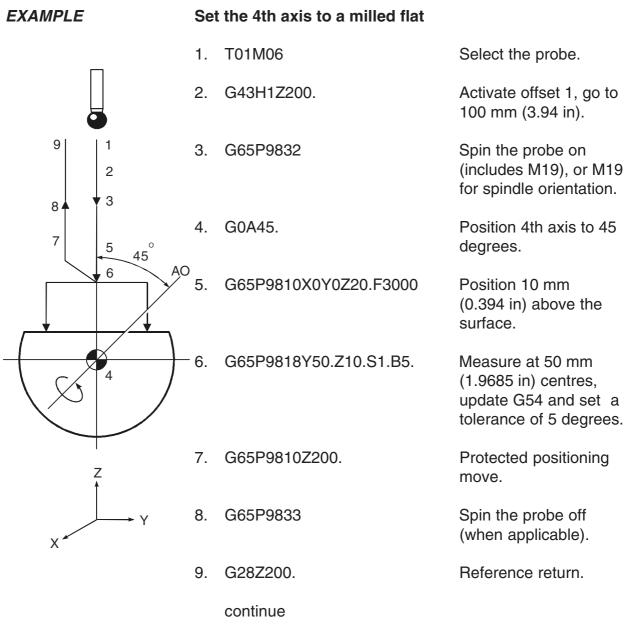


Figure 9.4 Probe movements

Bore / boss on PCD measurement – macro 09819

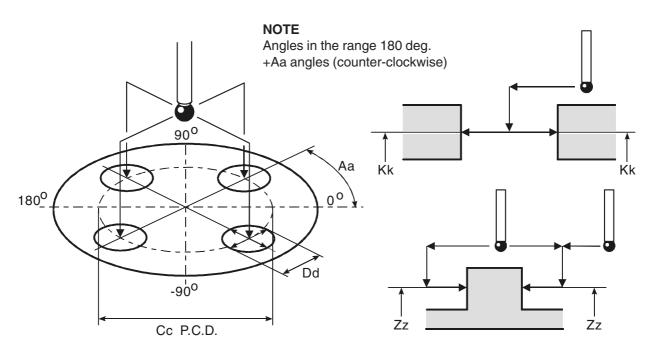
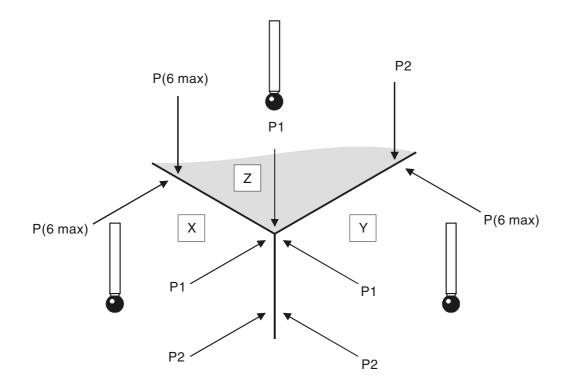


Figure 9.5 Bore / boss on PCD measurement

DESCRIPTION	The macro measures a series of bores or bosses on a pitch circle diameter (PCD). All probe moves occur automatically and return to the start position at the centre of the PCD.			
APPLICATION	1.	The probe is positioned at the centre of the PCD above the component. The probe moves to all bore/boss features and measures each feature automatically. The probe then returns to the PCD centre at the end of the cycle.		
	2.	The macro makes use of the bore/boss macro which is nested within the moves. This means that the macro nesting level is four deep, which means that this macro cannot be nested inside a customer macro.		


			moves alarm o returnin for safe	betw bccur ng to ety re	reen s an the aso	bord Id the start ns b	dition occurs during any of the e/boss features a path obstructed e probe stays in position instead of t position as is usual. This is done ecause the return path to centre be obstructed.
FORMAT	Boss	G65 I	P9819 (Cc Do	d Zz	[Aa	Bb Ee Hh Mm Qq Rr Uu Ww]
	or						
	Bore		⊃9819 (notes o			-	Bb Ee Hh Mm Qq Rr Uu Ww]
		Exam	nple:				C28.003 D50.005 K11. A45.005 H0.2 M0.2 Q10. R10. U.5 W2.
COMPULSOF	IY INPUTS	Сс			С	=	PCD. The pitch circle diameter of the bore/boss feature.
		Dd			d	=	Diameter of the bore/boss.
		Kk			k	=	Absolute Z axis position where the bore is to be measured.
		Zz			Z	=	Absolute Z axis position where the boss is to be measured.
OPTIONAL IN	IPUTS	Aa			а	=	Angle measured from the X axis to the 1st bore/boss feature. Default value = 0.
		Bb			b	=	The number of bore/boss features on the PCD. Default value = 1.
		Hh			h	=	The tolerance value of the bore/ boss dimension being measured.

Mm	m	=	The true position tolerance of the bore or boss. A cylindrical zone about the theoretical position.
Qq	q	=	The probe overtravel distance for use when the default values are unsuitable. The probe then travels beyond the expected position when it searches for a surface. Default values are 4 mm (0.16 in) in the Z axis and 10 mm (0.394 in) in the X,Y axis.
Rr	r	=	This is an incremental dimension that is used in an external bore or boss to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in).
R-r	-r	=	This is an incremental dimension that is used in an internal boss or web to give a radial clearance from the nominal target surface prior to a Z-axis move. Default value is 5 mm (0.200 in).
Ww	W	=	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
For optional input	ts Ee	e and	d Uu, see <i>Chapter 3 – Optional</i>

For optional inputs Ee and Uu, see *Chapter 3 – Optional inputs*

OUTPUTS		feature measurements will be stored in variables #185 (see <i>Chapter 4 – Variable outputs</i>).			
	W2.0	Component num number (set to 1	ber (incremented by 1). Feature).		
	W1.	Feature number	(incremented by 1).		
		owing data is outpu er of each bore/bose	t to the 'on-line device' (printer): s		
	1.	•	on of each feature. Angle position CD pitch circle diameter of each		
	2.	The feature numbe	r.		
	3.	Error of size and po	osition.		
	Refer to	the print macro de	tails for the output format.		
	Uu	(When the upper tolerance is exceeded. The macro continues to the end of the macro and print data is output for each feature. The UPPER TOLERANCE EXCEEDED alarm occurs and #169 = 2 is set if #170 is set. Otherwise the flag #169 = 2 is set only. The program continues.		

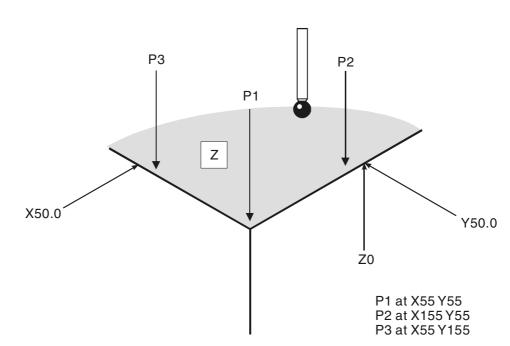
Stock allowance – macro O9820

Figure 9.6 Measuring the stock allowance

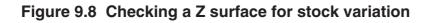
DESCRIPTIONThe cycle measures either an X or Y or Z surface at defined
positions to establish the maximum and minimum stock
condition of the surface.**APPLICATION**The probe should be positioned above the surface at the first
measuring position. The cycle measures the surface at this

measuring position. The cycle measures the surface at this position (P1). Additional points P2 to P6 maximum are measured as defined, depending on the number of sets of I, J, or K inputs.

NOTES:

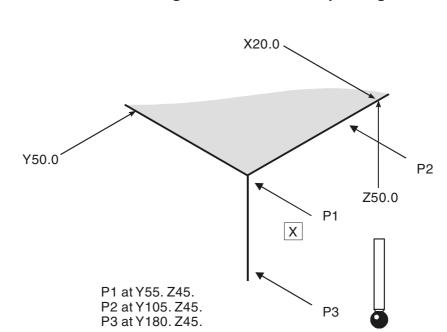

	 If setting a work offset, the surface position will be at the minimum measured position and the stock value is seen in #196. If <u>NOT</u> setting a work offset the nominal position is assumed and the maximum and minimum values are seen in #194 and #195. 				
FORMAT	X-surface n G65 P9820	neasure Xx Jj Kk [Ss Uu]	NOTE: Successive pairs of Jj, Kk values must be in order for P2 to P6.		
	or				
	Y-surface n G65 P9820	neasure Yy li Kk [Ss Uu]	NOTE: Successive pairs of Ii, Kk values must be in order for P2 to P6.		
	or				
	Z-surface n G65 P9820	n easure Zz li Jj [Ss Uu]	NOTE: Successive pairs of li, Jj values must be in order for P2 to P6.		
	[] denote op	otional inputs	121010.		
	Example:	G65 P9820 X100. J10. (this shows one additic i.e. P2)	K11. S1. U.5 onal [JK] pair of values,		
COMPULSORY INPUTS	Xx or Yy or Zz	x, y, z =	The nominal surface position for stock allowance check.		

Additional cycles


	I1 (P2) to I5 (P6)	i or	=	X surface positions for P2 to P6 (maximum five additional positions).
	J1 (P2) to J5 (P6)	j	=	Y surface positions for P2 to P6 (maximum five additional positions).
		or		
	K1 (P2) to K5 (P6)	k	=	Z surface positions for P2 to P6 (maximum five additional positions).
OPTIONAL INPUTS	Uu	u	=	The maximum stock allowance or upper tolerance (metal condition).
				 Uu input only The upper tolerance metal condition, e.g., surface at 30.00 +2.0/-0.0 G65P9820Z30.0U2.0liJj
				 Uu and Ss input. The maximum stock allowance.

	Ss	S =	The work offset number which will be set. This will be set to the minimum metal position #195. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
OUTPUTS	1. Uu input only		UPPER TOLERANCE EXCEEDED flag #198 will be set to 3
	2. Uu and Ss inj	put	EXCESS STOCK flag #198 will be set to 6
	#194 #195 #196		Maximum value (metal condition) Minimum value (metal condition) Variation (stock allowance)
Uu INPUT ONLY	7		Uu AND Ss INPUT
Upper tolerance ex	kceeded	_	Excess stock
Uu #195	#194	Uu	#195 #196 #196 #196 #194
Nominal position		l Work offset set to this position	Nominal position

Figure 9.7 Outputs for the stock allowance cycle


EXAMPLE 1 Checking a Z surface for stock variation

Select the probe.

G65P9810X55.Y55.Z20.F3000	Protected move to P1.
G65P9820Z0I155.J55.I55.J155.U2.	Measure at P1, P2, P3 and set a 2 mm (0.039 in) tolerance.

continue machining

EXAMPLE 2

Checking an X surface and updating a work offset

Figure 9.9 Checking an X surface and updating a work offset

Select the probe.

G65P9810X40.Y55.Z45.F3000

G65P9820 X20.J105.K45.J180. K45.S2 Measure at P1, P2, P3 and set the X axis work offset G55 to the minimum stock position at program position X20. Retract, select tool and offset G55 for machining X surface at the new X20. surface

position.

Protected move to P1.

Storing multi-stylus data – macro O9830

This cycle stores the data following calibration.

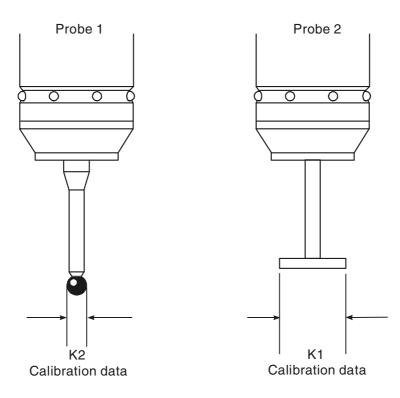
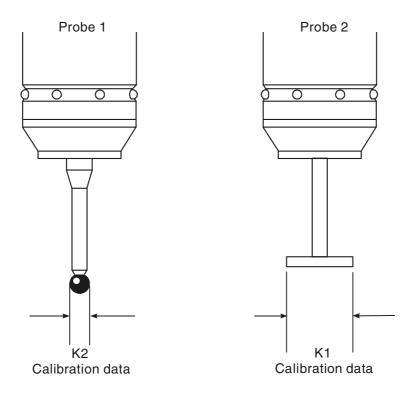


Figure 9.10 Storing multi-stylus data

- **DESCRIPTION** The macro is used to store probe stylus calibration data that has been established during the calibration cycles. It is stored in a spare set of macro variables. This macro must be used in conjunction with macro O9831 to recall relevant calibration data for each probe.
- **APPLICATION** Calibrate the stylus using macro O9802 and O9803. Run macro O9830 to store the calibration data #556 (556+0) to #559 (556+3). The values are recalled when macro O9831 is run.

It is also possible to store calibration data for vector cycles, by the use of the optional input.

<i>FORMAT</i> G65 P9830 Kk									
			Exa	mple:	G65 P9830 K11.				
COMPULSORY INPUT Kk Active calibration data			k = The multi-stylus probe numbe data storage. Store location						
	XRAD	YRAD	XOFF	YOFF	XRAD	YRAD	XOFF	YOFF	
K1	#556	#557	#558	#559	#574	#575	#576	#577	
K2	#556	#557	#558	#559	#578	#579	#580	#581	


For vector calibration data storage

#556 to #559 are stored as shown above, plus all the vector radii as shown below.

	Buffer calibration data					Store location			
	RAD	RAD	RAD	RAD					
K11	#566	#567	#568	#569	#582	#583	#584	#585	
	#570	#571	#572	#573	#586	#587	#588	#589	
K12	#566	#567	#568	#569	#590	#591	#592	#593	
	#570	#571	#572	#573	#594	#595	#596	#597	

EXAMPLE	Multi-stylus store K1	
	O0003	
	G90G80G40G0	Preparatory codes for the machine.
	G54X0Y0	Start position (X, Y, Z values must be set in the work offset)
	G43H1Z100.	Activate offset 1, go to 100 mm (3.94 in).
	G65P9832	Spin the probe on (includes M19), or M19 for spindle orientation.
	G65P9810Z-5.F3000	Protected positioning move for Z.
	G65P9803D50.001	Calibrate in a reference feature (ring gauge).
	G65P9830K1	Store calibration values for multi-stylus K1.
	G65P9810Z100.	Protected positioning move.
	G65P9833	Spin the probe off (when applicable)
	G28Z100.	Reference return.
	H00	Cancel offset.
	M30	End of program

Loading multi-stylus data – macro O9831

This cycle recalls the calibration data.

Figure 9.11 Recalling multi-stylus data

- **DESCRIPTION** This macro is used in conjunction with O9830. It is used to recall stored calibration data to the active calibration variable range prior to using a particular probe stylus configuration.
- **APPLICATION** The program must be run immediately before any measuring cycle to select the correct probe calibration data. The Kk input determines the data to be recalled.

FORM	ΑΤ		G65	G65 P9831 Kk						
			Exa	Example: G65 P9831 K11.						
COMPULSORY INPUT Kk					 k = The multi-stylus probe numb data recall. The Kk input nur should always be the same a that used to store the data us O9830 for a given stylus. 					
Active calibration data					Store location					
	XRAD	YRAD	XOFF	YOFF	XRAD	YRAD	XOFF	YOFF		
K1	#556	#557	#558	#559	#574	#575	#576	#577		
K2	#556	#557	#558	#559	#578	#579	#580	#581		

For vector calibration data storage

#556 to #559 are stored as shown above, plus all the vector radii as shown below.

	Buf	fer calib	oration o	Store location				
	RAD	RAD	RAD	RAD				
K11	#566	#567	#568	#569	#582	#583	#584	#585
	#570	#571	#572	#573	#586	#587	#588	#589
K12	#566	#567	#568	#569	#590	#591	#592	#593
	#570	#571	#572	#573	#594	#595	#596	#597

EXAMPLE	Multi-stylus load K1 and K2				
	T01M06	Select the probe.			
	G54X100.Y100.	Start position.			
	G43H1Z100.	Activate offset 1, go to 100 mm (3.94 in).			
	G65P9832	Turn the probe on (includes M19), or M19 for spindle orientation.			
	G65P9810Z-10.F3000	Protected positioning move.			
	G65P9831K1	Load calibration values for multi-stylus K1.			
	G65P9814D30.S2	Measure a 30.0 mm (1.181 in) diameter bore.			
	G65P9810Z10.	Protected positioning move.			
	G65P9810X350.	Protected positioning move.			
	G43H2Z-10.	Activate offset 2.			
	G65P9831K2	Load calibration values for multi-stylus K2.			
	G65P9814D130.S2	Measure a 130.0 mm (5.12 in) diameter bore.			
	G65P9810Z100.	Protected positioning move.			
	G65P9833	Turn the probe off (when applicable).			
	G28Z100.	Reference return.			
	continue				

Turning the probe on – macro O9832

DESCRIPTION	This macro is used to turn the probe on prior to it being used. The probe is loaded into the spindle and moved to a safe start plane, where the above format is used to activate the probe.					
	In the event of a startup failure, there is a loop in the software which tries to activate the probe up to four times. An alarm results if the probe does not activate.					
	It should be noted that a small automatic Z axis movement takes place within the macro to test if the probe is active.					
	NOTE: The probe tool of	fset must be active.				
FORMAT	G65P9832					
EXAMPLE	G43H20Z100.	Apply a tool offset and move to a safe plane.				
	G65P9832	G65P9832 Turn the probe on (includes M19), or M19 for spindle orientation.				
	G65P9810XYF	Move to a gauging position.				

Turning the probe off – macro O9833

DESCRIPTION This macro is used to turn the probe off prior to it being used. The probe is retracted to a safe start plane, where the above format is used to switch the probe off prior to a tool change.

There is a loop in the software, which will tries to de-activate the probe up to four times. An alarm results if the probe does not switch off.

It should be noted that a small automatic Z axis movement takes place within the macro to test if the probe is active. This means that the G28 reference return must be done following this macro, otherwise the G28 position is not effective.

NOTE: The probe tool offset must be active.

FORMAT	G65P9833	
EXAMPLE	G65P9810Z100.	Retract to a safe plane with the tool offset still active.
	G65P9833	Turn the probe off.
	G91	
	G28Z0	Retract
	continue	

Determining feature-to-feature data in XY plane – macro O9834

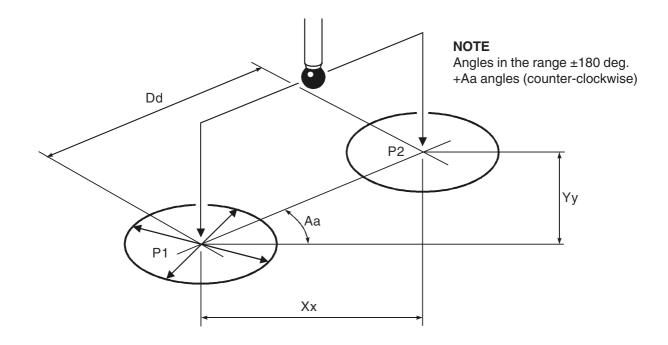


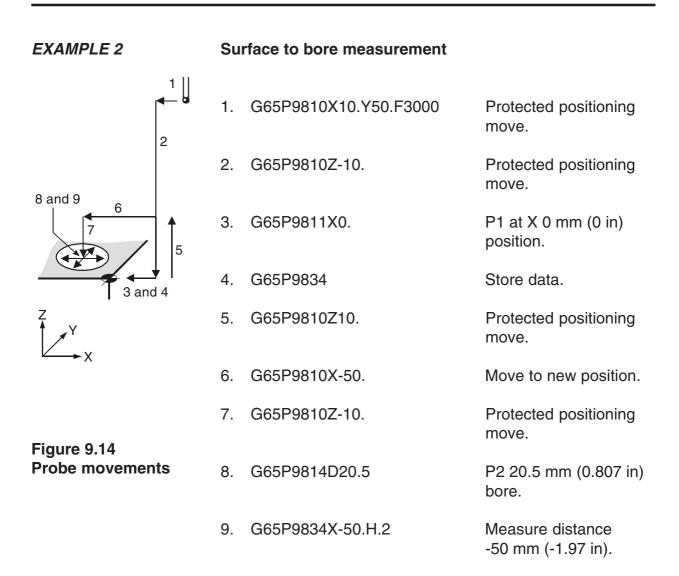
Figure 9.12 Determining feature-to-feature data in the XY plane

	NOTE: The order P1 and P2 is important, because the data calculated is that of P2 with respect to P1.
APPLICATION	Data for P1 and P2 must already be stored in variables #180 to #184, and #185 to #197 for P2, by running suitable measuring cycles.
DESCRIPTION	This is a no-movement macro that is used after two measuring cycles to determine feature-to-feature data.

	without any	1 are obtained by programming G65 P9834 inputs after the first measuring cycle. 2 are obtained by running a second measuring			
	cycle – the f programmin	eature-to-feature data is established by g G65 P9834 with suitable inputs after the suring cycle.			
FORMAT		Xx [Ee Ff Hh Mm Ss Tt Uu Vv Ww]			
		Yy [Ee Ff Hh Mm Ss Tt Uu Vv Ww]			
		Xx Yy [Bb Ee Hh Mm Ss Uu Ww]			
	or G65 P9834 Aa Dd [Bb Ee Hh Mm Ss Uu Ww]				
		(with no inputs). ptional inputs			
	Examples:	G65 P9834 X100. E0.005 F0.8 H0.2 M0.2 S1. T20. U.5 V.5 W2. or			
		G65 P9834 Y100. E0.005 F0.8 H0.2 M0.2 S1. T20. U.5 V.5 W2.			
		or G65 P9834 X100. Y100. B2. E0.005 H0.2 M0.2 S1. U.5 W2. or			
		G65 P9834 A45.005 D50.005 B2. E0.005 H0.2 M0.2 S1. U.5 W2.			

NOTES:

1. Updating a tool offset with T input is only possible if either O9811 or O9821 is used for P2 data. Otherwise an alarm (T INPUT NOT ALLOWED) results.


	2.	<i>This cycle cannot be used in conjunction with the web/pocket cycle macro O9812.</i>						
	3.	Angles. The XY plane is with respect to the X+ axis direction. Use angles in the range ±180 degrees.						
	4.		fo		ng data is a 5 to 5	any inputs) is used, stored: #180 #181 #182 #183 #184		
COMPULSORY INPUTS	Xx		x	=	The nomin in the X ax	al incremental distance tis.		
	Yy		у	=	The nomin in the Y ax	al incremental distance		
	Aa		a	=	measured	of P2 with respect to P1 from the X+ axis tween ±180 degrees).		
	Dd		d	=	The minimum distance betwee P1 and P2.			
	(No Inpu	uts)				ed to store output data cycle for P1 data.		
OPTIONAL INPUTS	Bb		b	=	-	tolerance of the g. 30 degrees ±1		
	Hh		h	=		nce value of the feature being measured.		

Mm	m	=	The true position tolerance of a feature. A cylindrical zone about the theoretical position.
Ss	S	=	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
Tt	t	=	The tool offset number to be updated.
Ww	W	=	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
Ear optional input		. ⊏f	Lu and Vy, and Chapter 2

For optional inputs Ee, Ff, Uu and Vv, see Chapter 3 - Optional inputs.

EXAMPLE 1		Measuring the incremental distance between two holes			
		G65P9810X30.Y50.F3000 Protected positioning move			
3 7 8	2.	G65P9810Z-10.	Protected positioning move.		
	3.	G65P9814D20.	P1 20 mm (0.787 in) bore.		
9 and 10	4.	G65P9834	Store data.		
Z 4 and 5	5.	G65P9810Z10.	Protected positioning move.		
∠►X	6.	G65P9810X80.Y78.867	Move to new position.		
Figure 9.13 Probe movements	7.	G65P9810Z-10.	Protected positioning move.		
		G65P9814D30.	P2 30 mm (1.181 in) bore.		
And either this		G65P9834X50.Y28.867M.1	Incremental distance measure with 0.1 mm (0.0039 in) true position tolerance.		
Or this	9.	G65P9834A30.D57.735M.1			

Measuring the incremental distance between two holes

Determining feature-to-feature data in the Z plane – macro O9834

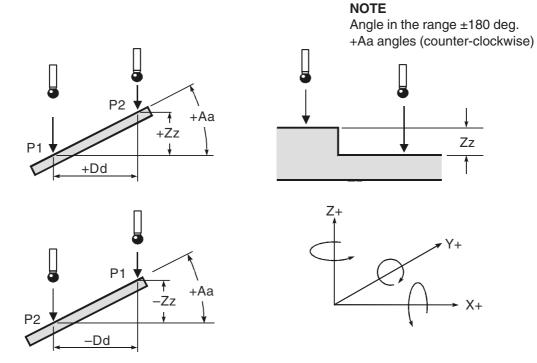


Figure 9.15 Determining feature-to-feature data in the Z plane

DESCRIPTION This is a no-movement macro that is used after two measuring cycles to determine feature-to-feature data.

APPLICATION Data for P1 and P2 must already be stored in variables #180 to #184, and #185 to #197 for P2, by running suitable measuring cycles.

NOTE: The order P1 and P2 is important, because the data calculated is that of P2 with respect to P1.

Values for P1 are obtained by programming G65 P9834 without any inputs after the first measuring cycle.
 Values for P2 are obtained by running a second measuring cycle, and the feature-to-feature data is established by programming G65 P9834 with suitable inputs after the second measuring cycle.
 FORMAT G65 P9834 Zz [Ee Ff Hh Mm Ss Tt Uu Vv Ww] or G65 P9834 Aa Zz [Bb Ww] or G65 P9834 Dd Zz [Bb Ww] or G65 P9834 (with no inputs) [] denote optional inputs

Examples: G65 P9834 Z50. E0.005 F0.8 H0.2 M0.2 S1. T20. U.5 V.5 W2. or G65 P9834 A45.005 Z50. B2. W2. or G65 P9834 D50.005 Z50. B2. W2. or G65 P9834 (with no inputs)

NOTES:

- 1. Updating a tool offset with T input is only possible if O9811 is used for P2 data. Otherwise an alarm (T INPUT NOT ALLOWED) results.
- 2. Angles. These are with respect to the XY. Use angles in the range ±180 degrees.

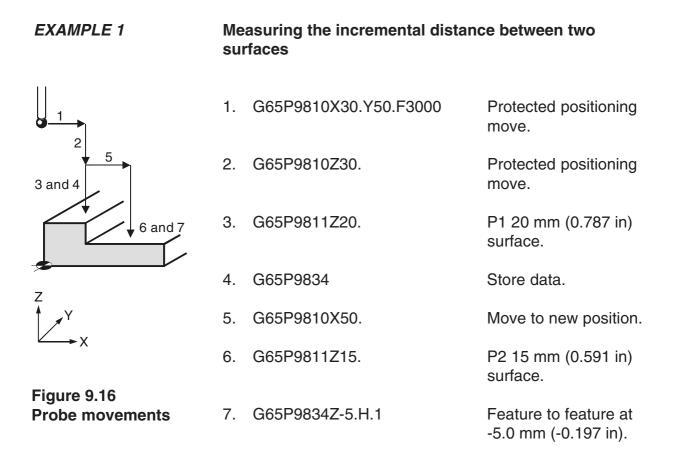
З.	When G65	5P9834 (v	vithout	any inputs) is used,			
	then the following data is stored:						
	from	#185	to	#180			

 #105	10	#100
#186		#181
#187		#182
#188		#183
#189		#184

INPUTS Aa Zz or Dd Zz inputs

- 1. +Dd/-Dd values should be used to indicate the direction of P2 with respect to P1.
- 2. +Aa angles (counter-clockwise).
- 3. Angles between \pm 180 degrees.

Zz only input


1. +Zz/-Zz values should be used to indicate the direction of P2 with respect to P1.

COMPULSORY INPUTS Aa

The angle of P2 with respect to P1 a = measured from the XY plane (angles between ±180 degrees). Zz The nominal incremental distance Z = in the Z axis. or d = The exact distance between P1 Dd and P2 measured in the XY plane. Zz The nominal incremental distance Z = in the Z axis. or

	(No Inputs)			This is used to store output data of the last cycle for P1 data.
OPTIONAL INPUTS	Bb	b	=	The angle tolerance of the surface, e.g. 30 degrees ±1 degree.
	Hh	h	=	The tolerance value of the feature dimension being measured.
	Mm	m	=	The true position tolerance of a feature. A cylindrical zone about the theoretical position.
	Ss	S	=	The work offset number which will be set. The work offset number will be updated. S1 to S6 (G54 to G59) S0 (external work offset). S110 to S129 (G110 to G129) additional offsets option. New work offset = active work offset + error. New external offset = external offset + error.
	Tt	t	=	The tool offset number to be updated.
	Ww	W	=	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
	For optional input	د ت	_ ⊑f	Lu and Vy see Chapter 3 -

For optional inputs Ee, Ff, Uu and Vv, see *Chapter 3 – Optional inputs.*

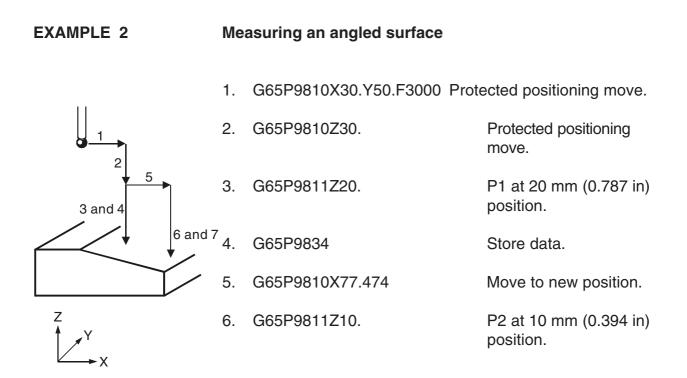


Figure 9.17 Probe movements

And either this	7.	G65P9834D27.474Z-10.B.5	Measure slope -20 degrees (clockwise) angle tolerance ±5 degrees.
Or this	7.	G65P9834A-20.Z-10.B.5	

Updating the SPC tool offset – macro O9835

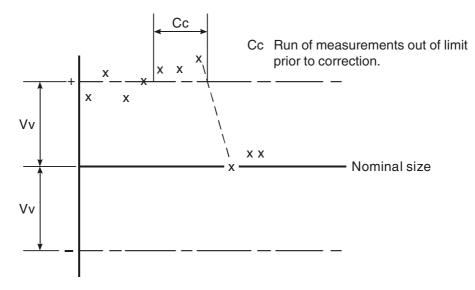
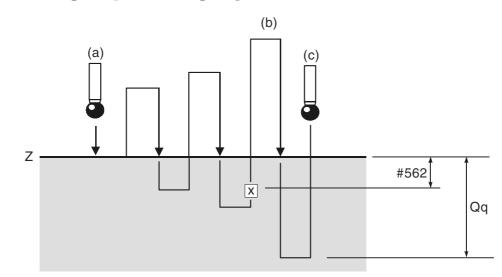



Figure 9.18 Updating the SPC tool offset

DESCRIPTION	to control tool	offset updates. It offer pdate based on the av	ion with measuring cycles rs the possibility of verage value of a sample	
APPLICATION	A measuring cycle should be run, but with no tool offset update (Tt input). A component tolerance (Hh input) can be used if required. The SPC macro should follow. An average value is accumulated until a specified continuous run of values are outside the control limit. At this point the tool offset is updated, based on the average value.			
	IMPORTANT:	Set the Mm store to offset page prior to	ool offsets to 0 on the o use.	
FORMAT	G65P9835 Tt N	Mm [Vv Cc Ff Zz]	[] denotes optional inputs	
	Example: 0	G65 P9835 T20. M0.2	V0.25 C4 F0.8 Z1.	

COMPULSORY INPUTS	Tt	t	=	Tool offset number for updating.
	Mm	m	=	Spare tool offset pair for storing average value and counter.
				m = Accumulated average value store location.
				m+1 = Counter store location.
OPTIONAL INPUTS	Cc	С	=	Number of measurements out of tolerance before corrective action is taken (default = 3).
	Ff	f	=	See Chapter 3 – Optional inputs.
	Vv	v	=	See Chapter 3 – Optional inputs.
	Zz	Z	=	Flag for Z length offset update. A Z value needs to be input to force the length offset register to be updated, otherwise the radius register will be updated. <i>Note:</i> <i>This input is only necessary when</i> <i>using type 'C' tool offset option.</i>
EXAMPLE	SPC tool offset u	bqu	ating	9
	From previous			
	G65P9814D50.H	.5		Measure bore to 0.5 mm (0.0197 in) tolerance.
	G65P9835T30.M3	1.V. ⁻	1C4.	 T30 = Tool offset number for updating. M31. = Spare tool offsets pair (31 and 32). V.1 = Control limit. C4. = Run of measurements out of limit.
	Continues			

Optimising a probing cycle – macro O9836

- a = Start at 30 mm/min (1.181 in/min)
- $b = #169^*.6$ feedrate.
- c = Maximum feedrate.

Figure 9.19 Optimising a probing cycle

NOTE: For small and medium machines the default values for feedrate and back-off distance are adequate. Therefore it is not essential to run this macro in every case.

DESCRIPTION	This macro is used to establish the optimum maximum feedrate and back-off distance values for the probing cycles.
APPLICATION	 The probe should be made active. At this stage the turn- on macro for the optical probe may not be functioning. Therefore, use the MDI mode and turn the probe by using the appropriate M-code.
	 Position the probe stylus within 2 mm (0.08 in) of the surface. Call this macro within a small program, and run the cycle.

The probe moves towards the Z surface at 30 mm/min. (1.2 in). The cycle continues to retract and find the surface several times to establish the optimum values.

At the end, the cycle returns to the start position.

NOTE: The repeat surface finding moves get progressively faster until the maximum overtravel is reached. Also, the retract position off the surface increases. It is important, therefore, that you allow for adequate Z axis movement, e.g., 60 mm (2.4 in).

The macro ends with a macro alarm message:

MESSAGE 75 (#168=BMCF DIST AND #169=FAST FEED)

These values are recommended values. They are not automatically installed into the active variables.

Install Values

- The fast feed value in #169 must be loaded into the setting macro O9724. See Appendix C – Settings macro details for details.
- 2. The back-off distance in #168 must be transferred into variable #562. This is possible in 'manual data input mode'. The variable is to be found on the common retained variable page.

FORMAT G65 P9836 Qq

Example: G65 P9836 Q10.

Additional cycles

OPTIONAL INPUT	Qq		q =	=	The maximum overtravel for the probe. Default value is 4 mm (0.16 in).
DIAGNOSTIC ALARMS					See <i>Chapter 10 – Macro alarms</i> for details.
	NOTE:	are relat feedrate gauging (3.94 in/i back-off changing	ed, a #169 mov min). dista g the	nd 9 v re. It an fe	the feedrates within the software are dependant on the fast value, with the exception of the This is always at 100 mm/min t should also be noted that the ce #562 can be affected by eedrate #169. Running this macro ompatible setting data.
FEEDRATES	Feedrate	es are inte	ernally	/ C	alculated as shown:
	Basic mo	ove macro	097	26	6
	Z axis fa	st approa	ch		#169*.6 (3000 mm/min [120 in/min.] standard).
	XY axis	fast appro	bach		#169*.6 (3000 mm/min [120 in/min.] standard).
	Gauge n	nove			100 mm/min. (3.94 in/min) all axes.
	All other	feedrates	6		
	Z axis po	ositioning			#169*.6 (3000 mm/min. [120 in/ min.] standard).
	XY axis	positionin	g		#169 (5000 mm/min. [200 in/min.] standard).

EXAMPLE	Write a small program to run this macro.		
	Position the probe approximately 2 mm (0.08 in) above a surface, with the probe active.		
	%		
	O5036		
	G40G80G90	Preparatory codes for the machine.	
	H00	Make tool offset zero	
	G65P9836Q6.0	Optimise for 6 mm (0.24 in) overtravel	
	M30		
	%		

Angle measurement in the X or Y plane – macro 09843

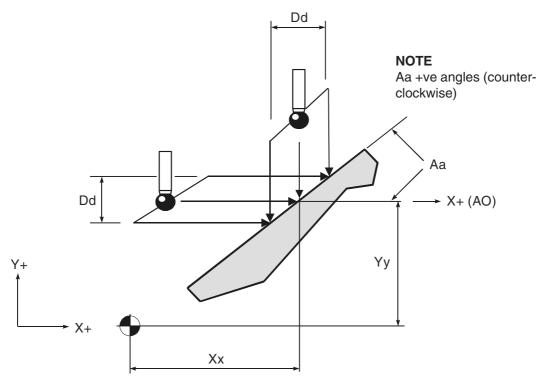
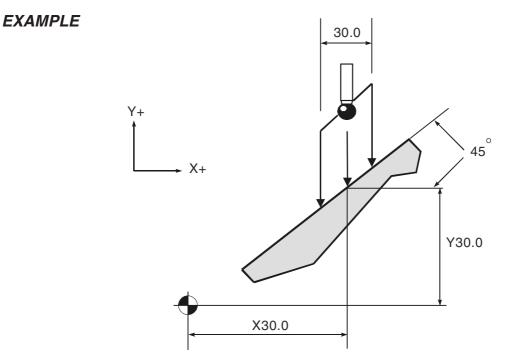



Figure 9.20 Measuring an angled surface in the X or Y plane

DESCRIPTION	This cycle measures an X axis or Y axis surface at two positions to establish the angular position of the surface.
APPLICATION	The probe stylus must be positioned adjacent to the surface and at the required Z axis position to provide a suitable start position. The cycle makes two measurements, symmetrically about the start position, to establish the surface angle.

FORMAT	G65 P9843 Xx Dd [Aa Bb Qq Ww] or G65 P9843 Yy Dd [Aa Bb Qq Ww] [] denotes optional inputs			
	Example: G65	5 P9843	X50. D30. A45. H.2 Q15. W1.	
COMPULSORY INPUTS	Dd	d =	The distance moved parallel to the X axis or Y axis between the two measuring positions.	
	Xx	X =	The mid-point surface position of the surface. An Xx input results in a cycle measuring in the X axis direction.	
	Үу	у =	The mid-point surface position of the surface. A Yy input results in a cycle measuring in the Y axis direction.	
	NOTE: Do not	mix the	Xx and Yy inputs.	
OPTIONAL INPUTS	Aa	a =	The nominal angle of the surface measured from the X+ axis direction positive angles (counter- clockwise). Specify angles between ±90 degrees of the default value.	
			Defaults: X axis measuring 90 degrees. Y axis measuring 0 degrees.	
	Bb	b =	The angle tolerance of the surface, e.g., 30 degrees ±1 degrees. Inputs A30.B1.	

	Qq	q =	The probe move overtravel distance. Default value is 10 mm (0.394 in).
	Ww	W =	 Print data 1. = Increment the feature number only. 2. = Increment the component number, and reset the feature number.
OUTPUTS	#189		The surface angle measured from the X+ direction.
	#193		The measured height difference.
	#194		The surface angle error.
ALARMS	Refer to <i>Chapter</i> macro alarms.	10 – Má	acro alarm list for details of the

Figure 9.21 Example of an angled surface measurement

code G69.

G65P9810 X30.Y50.Z100.F3000	Protected positioning move.	
G65P9810 Z-15.	Protected move to start position.	
G65P9843Y30.D30.A45.	Angle measure.	
G65P9810 Z100.	Retract to a safe position.	
continue		
G17		
G68G90X0Y0 R[#189]	Rotate co-ordinate system by the angle.	
Continue machining program		
NOTE: The Renishaw probe cycl while co-ordinate rotation		

This page is intentionally left blank.

Chapter 10

Macro alarms

When an error occurs during use of the Inspection Plus software, an alarm number or message is generated. This may be displayed on the screen of the controller.

Contained in this chapter

General alarms	. 10-2
Optimisation macro (O9836) only alarms	. 10-5

General alarms

Format

3006 =	
--------	--

t			#198 Flag
	1(OUTOF TOL)	Updates the	1
	1(OUT OF POS)	offset if the	2
	1(ANGLE OUT OF TOL)	cycle start button is	4
	1(DIA OFFSET TOO LARGE)	pressed to continue	5
	1(UPPER TOL EXCEEDED) 1(EXCESS STOCK)	No offset update if the cycle start butto is pressed to continu	
	1(PROBE SWITCH OFF FAILURE)	Turn-off macro O983	3

Check the following:

The turn-off cycle may fail if the spindle speed of S500 is not achieved. Check that the spindle speed override is not active. Possible faulty probe.

Action

Cycle start to continue

Format

#3000 = 101(PROBE START UP FAILURE) Turn-on macro O9832

Action

Check the following:

The turn-on cycle may fail if the spindle speed of S500 is not achieved. Check that the spindle speed override is not active.

Possible faulty probe.

This is a reset condition. Edit the program and start again from a safe start position.

Format #3000 =	91	(MESSA	GE)
	91	(FORMA	T ERROR)
	91 91 91 91 91 91 91 91 91 91	(A (B (C (D (I (J (K (X (Y (Z (XYZ	INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING) INPUT MISSING)
	91	(DATA	#180 TO #189 MISSING)
	91 91 91 91 91	(X0 (Y0 (H (T (IJK	INPUT NOT ALLOWED) INPUT NOT ALLOWED) INPUT NOT ALLOWED) INPUT NOT ALLOWED) INPUTS 5 MAX)
	91 91 91 91 91 91 91	(XY (XY (ZK (SH (ST (TM (XYZ	INPUT MIXED) INPUT MIXED) INPUT MIXED) INPUT MIXED) INPUT MIXED) INPUT MIXED) INPUT MIXED)
	91	(K	INPUT OUT OF RANGE)

Action

Edit the program

This is a reset condition. Edit the program and start again from a safe start position.

Format

#3000 = 86(PATH OBSTRUCTED) protected positioning cycle only.

Action

Edit the program This is a reset condition. Clear the obstruction and start again from a safe position.

Format

#3000 = 88(NO FEED RATE) protected positioning cycle only

Action

Edit the program. This is a reset condition. Insert the F____ code input, and start again from a safe position.

Format

#3000 = 89(NO TOOL LENGTH ACTIVE)

Action

Edit the program This is a reset condition. G43 or G44 must be active before the cycle is called. Edit and start again from a safe position.

Format

#3000 = 92(PROBE OPEN) This alarm occurs if the probe is already triggered before a move.

Action

Clear the fault

This is a reset condition. Clear the fault and start again from a safe start position. The stylus may be in contact with a surface, or the probe has failed to reseat. This could be due to swarf trapped around the probe eyelid.

Format

#3000 = 93(PROBE FAIL) This alarm occurs if the probe did not trigger during the move.

Action

Edit the program.

This is a reset condition. Edit the program and start again from a safe start position. The surface was not found or the probe has failed.

Optimisation macro only (O9836) alarms

Format

#3000 = 72(SKIP SIGNAL ALREADY ACTIVE) optimisation macro only. This indicates that the machine skip signal is high prior to the probe move. Check that the probe is active and that the interface is not in error. Check wiring. Check that the interface output relay is configured correctly, i.e. N/C or N/O. Is the stylus in contact with a surface? A possible reseat problem.

Action

Clear the fault

Format

#3000 = 73(NO SKIP SIGNAL DURING MOVE) optimisation macro only. The skip signal was not activated during the move. Check the wiring. Check probe operation and interface LED outputs to confirm operation when the stylus is manually deflected. Also relay output voltage to skip when the probe is triggered.

Action

Edit the program

Format

#3000 = 74(H00 CODE TOOL LENGTH NOT ACTIVE) optimisation macro only. The tool length offset must be set to zero by programming 'H00' prior to calling the macro. This permits the safe operation of jogging the stylus into a start position before running the macro.

Action

Edit the program

Format

#3000 = 75(#168=BMCF DIST AND #169=FAST FEED) optimisation macro only. This is the end of the optimisation cycle. The values in #168 and #169 can be installed (see *Optimising a probing cycle* [optimisation macro O9836] in *Chapter 9 – Additional cycles* for details).

Action

Install setting values

Appendix A

Example job

Contained in this appendix

Introduction	A-2
Probe operations	A-3

Introduction

The component shown in Figure A.1 is to be machined on two faces by rotating the component about the machine A axis on the 4th axis unit.

Figure A.1 Motorised arm base – general view

The following probe operations are carried out:

• The probe is used initially on the 0 degree face to level up the component using an A axis work offset shift.

• The component datum is then set in the X, Y, and Z axis for machining.

During machining of this face, the side face of the lower left pad is machined as a datum for the 270 degree face machining (Ref. Y axis datum).

• The probe is also used on the 270 degree face to set the Y, Z axis component datum.

Nominal work offset data is entered in G54 and G55 before the machining operation.

Probe operations

%

O5866

(M-2116-0031-01-D) (MOTORISED ARM-BASE) (TAPE NO - T5866) (*)

(PROBE TO FIND CENTRE)

G17G94

G90G40G80

N10M00

(COMPONENT SET UP PROBING) (LOAD NOMINAL WORK OFFSETS)

/T30

Select the probe

/G91G28Z0A0

Retract

/G28A0	Position A axis
/G90	Absolute co-ordinates

Refer to Figure A.2 for probe movements 1 to 18

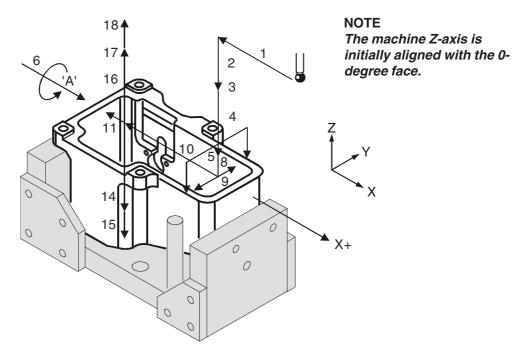
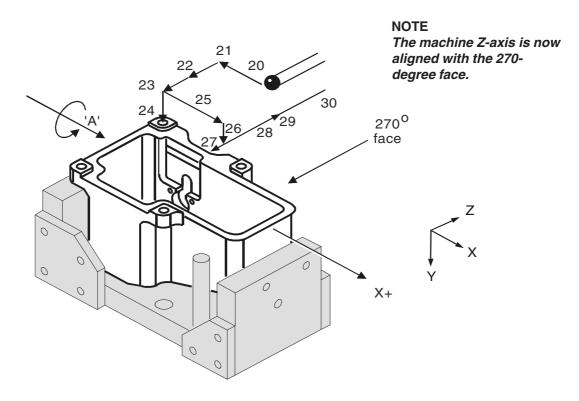


Figure A.2 Probing operations on the 0-degree face

1.	/G00G54X90.Y0.	Rapid positioning
2.	/G43G1H30Z100.F3000	Go to Z 100 mm (3.94 in), apply tool offset.
3.	/G65P9832	Spin the probe on.
4.	/G65P9810Z10.F3000	Protected move to start position.
5.	/G65P9818Y79.Z0S1.	Set G54 A axis on the top face.
6.	/G0A0	Level to new A axis position.


7.	/#5244=#5224	Transfer G54 A axis to G55 A axis work
		offset.
8.	/G65P9810Z-28.F3000.	Protected move to position.
9.	/G65P9812Y69.S1.	Set G54 Y centre.
10.	/G65P9810X-35.Y0	Protected move to position.
11.	/G65P9811X-44.S1.	Set G54 X position.
12.	/#5241=#5221	Transfer G54 X axis to G55 X axis work offset.
13.	/G65P9810X0	Protected move to position.
14.	/G65P9810Z-84.	Protected move to position.
15.	/G65P9811Z-94.S1.	Set G54 Z position.
16.	/G65P9810Z100.	Protected move retract.
17.	/G65P9833	Spin the probe off.
18.	/G91G28Z0	
	/G90	
	/M01	
Сог	ntinue machining 0-degre	e face
	G0A-90.	Index to 270 degree face.
	N210 (PROBE TO SET G55 Y	Z)
	/M01	
	/T30	Select probe.

/M09

/G91G28Z0

/G90

Refer to Figure A.3 for probe movements 20 to 30

20.	/G0G55X-38.0Y-74.0	Rapid positioning move
21.	/G43G1H30Z100.F3000	Go to Z 100 mm (3.94 in), apply tool offset.
22.	/G65P9832	Spin the probe on.

- 23. /G65P9810Z-5.F3000. Protected move to position.
- 24. /G65P9811Y-66.S2. Set G55 Y axis work offset.
- 25. /G65P9810X0Z10. Protected move to position.
- 26. /G65P9810Y-60. Protected moves to position.
- 27. /G65P9811Z0S2. Set G55 Z axis work offset.
- 28. /G65P9810Z100. Protected move retract.
- 29. /G65P9833 Spin the probe off.
- 30. /G91G28Z0 Retract /G90

/M01

Continue machining 270-degree face

G91G28Z0	Z return
G28X0Y0A0	X, Y, A return to start position.
G90	
N420	
M01	
M30	
%	

This page is intentionally left blank.

Appendix B

Features, cycles and limitations of the Inspection Plus software

Contained in this appendix

Features of the Inspection Plus Software	B-2
CyclesI	B-3
Limitations	B-4
Limitations when using vector cycles O9821, O9822 and O9823 I	B-4
Use of 3-point bore/boss macro O9823 I	B-4
Mathematical precision	B-5
Effect of vector calibration data on results	B-5

Features of the Inspection Plus software

- Protected positioning.
- Measurement of internal and external features to determine both size and position. This includes:
 - Obtaining a hardcopy printout of feature data.
 - Applying tolerances to both size and position.
- Additional features for feedback of errors include:
 - Experience values can be applied to the measured size.
 - Percentage feedback of the error can be applied.
 - Null band zone for no-tool offset update.
 - SPC (statistical process control) feedback based on average value.
- Calculation of feature-to-feature data.
- Measurement of external and internal corners for corner surfaces which may not be parallel to an axis.
- Calibration of multiple stylii.
- 4th axis datum setting and tolerancing.
- Angular measurement of features.
- Software option to turn off the tolerance alarms and provide a flagonly alarm. Suitable for FMS and unmanned applications.
- Built in stylus collision and false trigger protection for all cycles.
- Diagnostic and format error checking routines for all cycles.

Cycles

- Protected positioning.
- Measurement:
 - XYZ single surface.
 - Web / pocket.
 - Bore / boss (four measuring points).
 - Internal and external corner find.
- Vectored measurement:
 - 3-point bore boss.
 - Web / pocket.
 - Single surface.
- Additional macros:
 - 4th axis measurement.
 - Bore / boss on a PCD.
 - Stock allowance.
 - Multi-stylus calibration.
 - XY plane angle measurement.

Limitations

- The probe cycles will not run if 'mirror image' is active.
- The probe cycles will not run if 'co-ordinate rotation' is active.
- Consider macro variable availability.
- This software package can be used in the following controls.

Limitations when using vector cycles O9821, O9822 and O9823

Vectored cycles involve the mathematical operation of squared values. This can lead to precision errors if large values are used. The following factors must be considered:

Use of 3-point bore/boss macro O9823

The macro may be used to establish the centre and diameter of a bore or external feature. There is however a practical limitation to the use of the macro. It is advisable to use the largest distance between contacts, that is practical. The minimum conditions to give reliable data are as follows:

- 1. 168 degrees total span.
 - 2. 48 degrees between any two points.
- The software does not check the minimum condition inputs.
- The accuracy of the result deteriorates if the minimum conditions are not followed.

Mathematical precision

The mathematical precision of the controller is a limiting factor if large values are used. The Fanuc controller works within an accuracy of eight significant figures. Because of the mathematical operations concerned, an error may accumulate if large values for probing positions about the centre are used for calculation. It is suggested that, at this moment, X Y coordinate values of ± 300.00 mm (30.000 in) from the feature centre are not exceeded for any position around a bore, to retain a resultant resolution of better than 0.01 mm (0.001 in).

Effect of vector calibration data on results

The vector calibration cycle establishes true calibration data at each 30 degree increment. A small error due to the probe trigger characteristics may occur at intermediate angles between the 30 degree calibration points. However this error is small for standard machine tool probes with standard styli.

NOTE: For better accuracy, always use the standard bore boss cycle (O9814) where possible.

This page is intentionally left blank.

Appendix C

Settings macro details

Contained in this appendix

Macro G65	iP9724	C-2

Macro G65P9724

This macro is called at the beginning of all top level macros to establish the necessary modal information.

The following data may be adjusted to suit during the installation by editing this macro.

The following values are supplied as standard:

#170 = 1 (SELECT OPTIONS)	(see the table on the next page)
#173 = .05 (POSITION ZONE MM)	This is the zone at either the start or end of the block in which the cycle is aborted with either Probe Open or Probe Fail.
#169 = 5000 (FAST FEED MM) #169 = 200 (FAST FEED INCH)	The fast feed rate of the cycles can be adjusted by this variable to suit the machine characteristics and should be optimised.

NOTES:

- 1. The X, Y and Z axis P9726 basic move macro fast feedrate is #169*.6, i.e. 3 metres/min as standard.
- 2. All Z axis positioning moves are also #169*.6, i.e. 3 metres/ min as standard.
- *3.* All XY axis positioning moves are #169 value i.e. 5 metres/ min as standard.

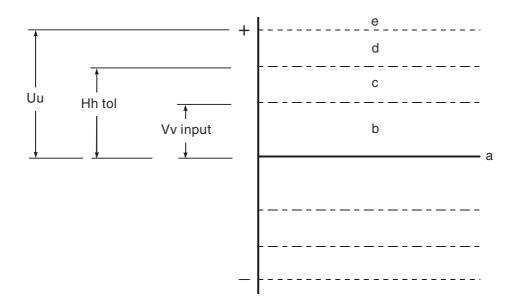
Setting conditions for variable #170		
Radius/diameter tool offset type	Tolerance alarm method	Setting value
Radius type	Flag and alarms	#170=3
Diameter type	Flag and alarms	#170=19
Radius type	Flag only	#170=7
Diameter type	Flag only	#170=23

It is expected that the settings to enable 'Flag only alarms' will suit FMS machining cells where the requirement is to run unmanned. The probe error flag #199 will be set and it should be monitored after relevant probe cycles for corrective action (for use of extended tool offsets, see *Appendix J* – *Tool offset macro 09732 and 09723*).

G65 P9812 X30.H.2	Set tolerance on measured size
IF[#198EQ1] GOTO999	Test for out of tolerance
continue part program	
GOTO1000	
N999 G65P5001	Pallet change This changes the pallet to select the next component for machining (details are machine dependant)
GOTO1	Go to start of program
N1000	
M30	
	IF[#198EQ1] GOTO999 continue part program GOTO1000 N999 G65P5001 GOTO1 N1000

This page is intentionally left blank.

Appendix D


Tolerances

Contained in this appendix

Tolerances	D-2
True position tolerances	D-3

Tolerances

Uu, Hh and Vv apply to size and tool offset updates only.

- a = Nominal size
- b = Null band. This is the tolerance zone where no tool offset adjustment occurs.
- c = Area where the Ff input is effective in percentage feedback. F (0 to 1) gives 0% to 100% feedback to the tool offset.
- d = Hh 'OUT OF TOLERANCE alarm' occurs. The tolerance value is that which is applied to the size of a feature.
- e = Uu upper tolerance limit. If this value is exceeded there is no tool offset or work offset updated and the cycle is stopped with an alarm. This tolerance applies to both size and position where applicable.

Figure D.1 Size and tool offset update tolerances

Also see SPC macro O9835 (see *Chapter 9 – Additional cycles*) which can be used as a modified method for the feedback of tool offset corrections. Use this instead of Ff.

True position tolerances

For a true position tolerance (Mm input), see Figure D.2 below.

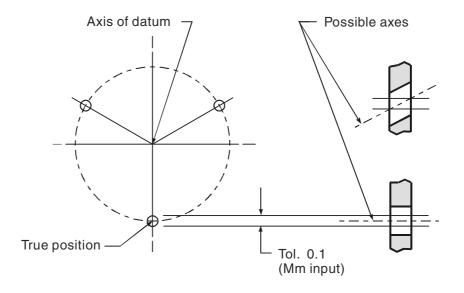


Figure D.2 Cylinders centred on true positions

This page is intentionally left blank.

Appendix E

Experience values Ee

Contained in this appendix

Experience values Ee	E-2
Reason for using this option	E-2

Experience values Ee

The measured size can be adjusted by an amount stored in a spare tool offset.

EXAMPLE

Measure a 40 mm diameter and update tool offset 20

G65P9814 D40. T20 E21

An experience value stored in tool offset 21 will be applied to the measured size.

NOTE: The experience value is always added to the measured size.

Also refer to Appendix F – Additional spare tool offsets.

Reason for using this option

Component clamping forces in some applications can influence the measured size. Therefore, an adjustment value to relate measurement to a traceable standard, such as a co-ordinate measuring machine, is desirable. Thermal effects can also be compensated by this means.

Appendix F

Additional spare tool offsets

Contained in this appendix

Additional spare tool offsets F-2

Additional spare tool offsets

The range of tool offsets available is extended with the Type C tool offset installed on the machine.

Each tool offset is actually four registers. These are tool length geometry and wear, plus tool diameter / radius geometry and wear. There may be limitations on the maximum values allowable in the wear offsets set by the OEM. In practice, it may only be possible to use the geometry registers.

These can be addressed in the macro call line as follows:

Tool length geometry offsets	E1 to E100
Tool diameter / radius geometry offsets	E401 to E500

From the figures you can see that 400 can be added to the tool offset number to address the additional range of registers.

These additional tool offset registers can safely be used for both 'Ee' experience values and also with the SPC macro (O9835) 'Mm' input provided. The tool offset number is not used as a normal tool offset location.

Appendix G

Printing a macro output

Contained in this appendix

Example of	printing a macro	output	 G-2
	printing a maoro	ouipui	 ~ ~

Example of printing a macro output

COMPONENT NO 31 FEATURE NO 1

POSN R79.0569 ACTUAL 79.0012 TOL TP 0.2000 DEV -0.0557 POSN X-45.0000 ACTUAL -45.1525 TOL TP 0.2000 DEV -0.1525 POSN Y-65.0000 ACTUAL -64.8263 TOL TP 0.2000 DEV 0.1737

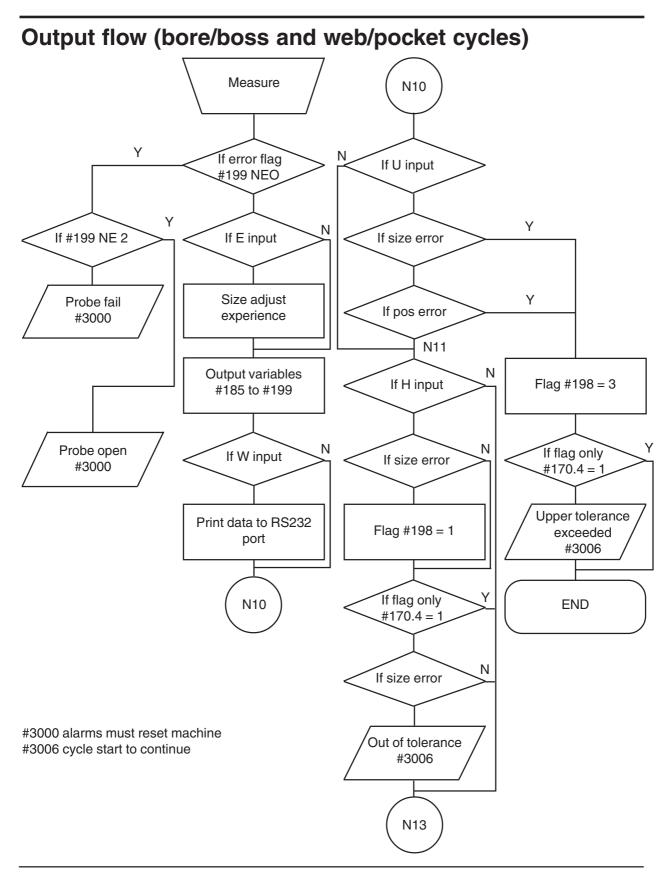
+++++OUT OF POS+++++ ERROR TP 0.1311 RADIAL

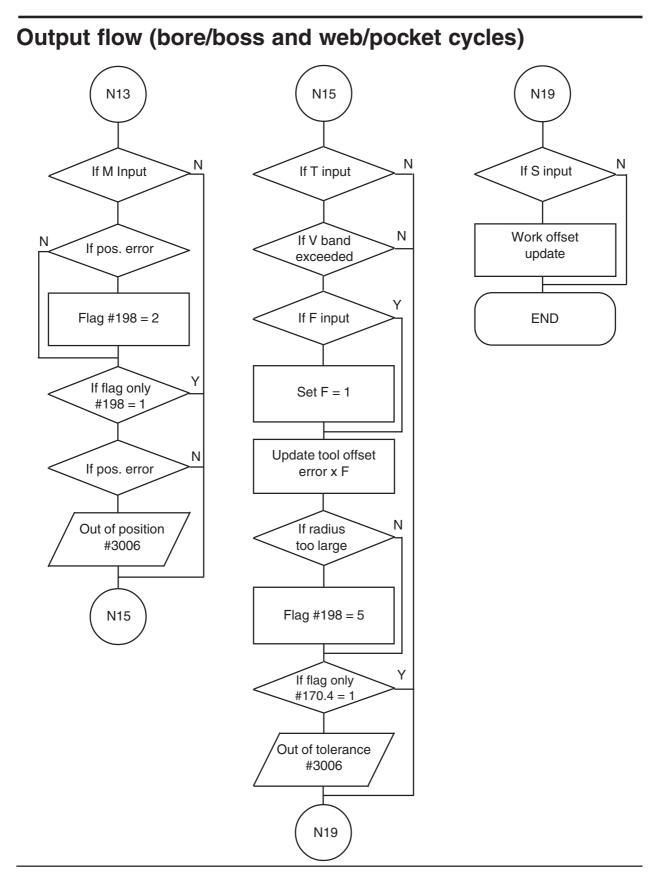
ANG -124.6952 ACTUAL -124.8578 DEV -0.1626

COMPONENT NO 31 FEATURE NO 2

SIZE D71.0000 ACTUAL 71.9072 TOL 0.1000 DEV 0.9072

+++++OUT OF TOL+++++ ERROR 0.8072


POSN X-135.0000 ACTUAL -135.3279 DEV -0.3279 POSN Y-65.0000 ACTUAL -63.8201 DEV 1.1799


Appendix H

Output flow (bore/boss and web/pocket cycles)

Contained in this appendix

Output flow (bore/boss and web/pocket cycles) H-2

This page is intentionally left blank.

Appendix I

Use of macro variables

Contained in this appendix

Local variables	I-2
Common variables	I-2
Common retained variables	I-3

Local variables

#1 to #32	These are used within each macro as required for
	calculation etc.

Common variables

#161	Base number for calibration.
#166	Active tool length - calculated in macro O9723.
#167	Modal feedrate value is used in the protected positioning macro (O9810).
#168	Radius too large flag macro O9812, O9814, O9822, O9823 (also used for temporary ATAN store in macro O9731).
#169	Fast feedrate value. This is set in macro O9724 at 5000 mm/min (200 in/min) default value.
#170	Setting variable used in macro O9724.
#171	Print, component number (6-digit) increment by 1, with each heading program #171 = 0 to reset.
#172	Feature number (4-digit) increment by 1, with each print macro call program #172 = 0 to reset.
#173	Start and end of block position zone normal setting 0.05 mm (0.002 in). If the skip position is within this zone, the cycle aborts, with a Probe Open or Probe Fail alarm.
#174	Stored X skip position at the end of the basic move macro O9726

#175	Stored Y skip position at the end of the basic move macro O9726.
#176	Stored Z skip position at the end of the basic move macro O9726.
#177	X average skip position at the end of the X diameter move macro O9721.
#178	Y average skip position at the end of the Y diameter move macro O9722.
#179	Inch/metric multiplier (0.04/1.0)
#180 to #184	Output data #180 to #184 is stored when the feature- to-feature macro O9834 is used.
#185 to #199	See <i>Chapter 4 – Variable outputs</i> for an output reference chart.

Common retained variables

The actual variables available are the limiting factor and depend on the base number used for adjusting the range of #500 variables used for data storage.

The variable allocation described below assumes that the default base number of 556 (set in macro O9724) is being used.

#556 (556 + 0)	(XRAD) X calibration radius
#557 (556 + 1)	(YRAD) Y calibration radius
#558 (556 + 2)	(XOFF) X axis stylus offset
#559 (556 + 3)	(YOFF) Y axis stylus offset

- #560 (556 + 4) (Reserved for other software packages)
- #561 (556 + 5) (Reserved for other software packages)
- #562 (556 + 6) Basic move control factor. This is used to control the back-off distance in the basic move before the final gauge move. It should be fine tuned on installation to suit the machine. Refer to Figure I.1 for a diagrammatic representation.

A default value of 0.2 is installed by the software. The actual factor should normally be between 0 and 1.0. Reduce the value to reduce the back-off distance.

NOTE: This value can be found by using the optimisation macro O9836. The value must be set in the Settings macro O9724.

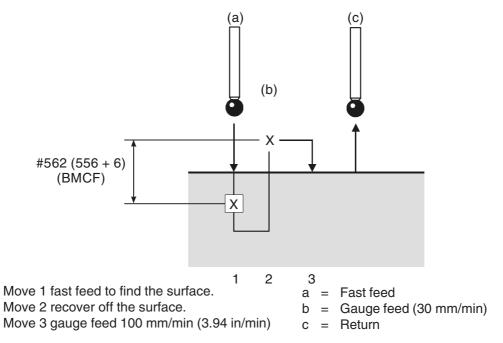
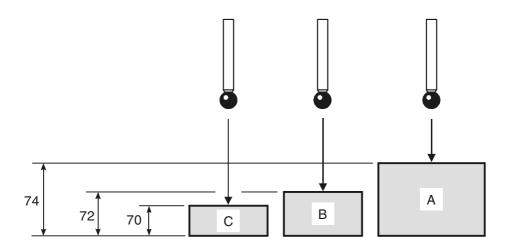


Figure I.1 Basic move control factor

#563 (556 +7)	(Reserved for other software packages)
#564 (556 +8)	(Reserved for other software packages)
#565 (556 +9)	Active vector radius used in macros O9821, O9822, O9823
#566 to #597	These are reserved for vector calibration data and multi-stylus storage as described below:
#566 (30 degree) #567 (60 degree) #568 (120 degree #569 (150 degree #570 (210 degree #571 (240 degree #572 (300 degree #573 (330 degree	Vector calibration data
#574 to #577	Multi-stylus data K1
#578 to #581	Multi-stylus data K2
#582 to # 589	Vector multi-stylus data K11
#590 to #597	Vector multi-stylus data K12

This page is intentionally left blank.

Appendix J


General probing applications

Contained in this appendix

Example 1 – Part identification	J-2
Example 2 – Probe measure every nth component	J-3

Example 1 – Part identification

If a group of components can be identified by a single feature a probe can be used to inspect that feature and decide which component is present. This is done by using data from the Output chart following a measuring program.

Each part surface is known to be within ± 0.5

Figure K.1 Part Identification

G65 P9810Z84.F3000	Protected move to start position
G65P9811Z70.	Single surface measure (target C surface)
IF[#187GT73.]GOTO100	If error greater than 73.0 goto N100
IF[#187GT71.]GOTO200	If error greater than 71.0 goto N200
IF[#187GT69.]GOTO300	If error greater than 69.0 goto N300
GOTO400	

N100(PROGRAM TO MACHINE A)

continue 'A' component

GOTO400

N200(PROGRAM TO MACHINE B)

continue 'B' component

GOTO400

N300(PROGRAM TO MACHINE C)

continue 'C' component

N400

M30

%

Example 2 – Probe measure every nth component

It is often a requirement to probe every *Nth* component in the interests of reducing overall cycle time.

The following programming method can be employed -

O5000(PART PROGRAM)

#121=5 Count limit

N1

(START OF MACHINING)	
conventional part programming	
N32	
(START OF PROBE ROUTINES)	
IF[#120LT#121]GOTO33	If counter less than 5 jump to N33
T01M06 (PART INSPECTION)	Select inspection probe
probing routines	
#120=0	Reset counter to zero
N33	
(CONTINUE MACHINING OR EN	D)
#120=#120+1	Increment counter
rest of machining program	
M99P1	Return to N1
M30	
%	

Appendix K

One-touch measuring

Contained in this appendix

Introduction K-2
Why use a one-touch probe cycle? K-2
Machine distortion K-2
Comparing cycle times K-2
Installing the one-touch cycles K-3
Macro edits
Measuring the feedrate K-4
Stand-off and overtravel distance K-4
System operation K-5
Using standard skip K-5
Additional variables used K-6
Approach feedrates K-6
Back-off distance #562 (556 + 6) K-6
False trigger loop K-6
Acceleration and deceleration allowance K-6
Q input K-8
Measuring move detail K-9
One-touch measuring move logic K-10

Introduction

The Inspection Plus software package provides an optional one-touch measuring capability to supplement the standard two-touch cycles. The one-touch cycles are intended for use on machines with a fast probe trigger detection ability so that high measuring feedrates can be used.

Why use a one-touch probe cycle?

A one-touch cycle offers the benefit of reduced cycle times and fewer probe triggers per cycle. It can be used when the nominal surface position is known to within a small window of uncertainty.

Machine distortion

The machine is under stress during acceleration and deceleration and therefore the recorded trigger values may have errors depending on machine tool condition.

Comparing cycle times

A program was prepared to perform five surface measurements as follows:

- Start 50 mm above the ring gauge
- Measure a 50 mm bore at 5 mm deep (four cardinal points)
- Retract to 5 mm above, move over and make a Z measure on top of the ring gauge
- Retract to 50 mm and return to the centre

Table K.1 Cycle time comparision					
		Time in seconds @ 500 mm/min	Time in seconds @ 120 mm/min	Time in seconds @ 60 mm/min	Time in seconds @ 30 mm/min
Two-touch	cycle	_	_	_	27.6
One-touch Stand-off distance	cycle 0.5 1.0 2.0 3.0	18.0 18.2 18.7 19.1	18.5 19.8 22.4 24.4	20.0 22.2 27.4 32.2	22.4 27.2 37.1 47.0

Tbale K.1 shows cycle time comparisons only. Check for suitable measuring feed rates on your machine.

Installing the one-touch cycles

NOTE: The new one-touch basic move macro O9726 is only compatible with the software supplied with this package. Previous versions are not compatible.

Before installing the one-touch cycles, the standard two-touch cycles must already have been installed.

The one-touch cycles file (401200885) contains a new one-touch macro O9726. This should be loaded once the existing two-touch macro O9726 has been deleted from memory.

Macro edits

Macro O9726, shown below, may be edited for measuring feed rate and stand-off/overtravel distance values:

```
:9726(REN BASIC MEASURE -1T)
#9=500*#179(EDIT MEAS FEED) ....* Feed - edit 500 value
#28=#9/1000(EDIT ZONE) .... accel / deceleration zone
#31=0
IF[#17NE#0]GOTO2
#17=3*#179(EDIT)...... * stand off - edit 3 value
N2
```

NOTE: * denotes this value must be in millimetres

Measuring the feedrate

The default value is 500 mm/min (20 in/min). This may be changed by editing the macro; for example, if the servo delays are included in the results.

Stand-off and overtravel distance

The default value is 3 mm (0.12 in) in the X, Y and Z axes. Edit the macro to set a new default or, alternatively, use the 'Q' input to override the default value (see page K-8).

System operation

Refer to the chapters of this manual for a full description of the cycles and their use.

Using standard skip

Based on a typical 4 millisecond scan time of the PLC, the standard twotouch method uses a feedrate of 30 mm/min (1.18 in/min). This gives a measuring uncertainty of 0.002 mm (0.000 1in).

Generally, the two-touch method is well suited to this situation because the back-off distance can be optimised to provide a short measuring move; for example, less than 0.5 mm (0.020 in). If the one-touch cycles are chosen, the stand-off distance should be kept small and higher feedrates used if accuracy of measuring is not critical.

Table K.2 Example using the 4 millisecond scan time allowance		
Feedrate	Measuring uncertainty	
30 mm/min	0.002 mm	
60 mm/min	0.004 mm	
120 mm/min	0.008 mm	
500 mm/min	0.033 mm	

NOTE: Measuring uncertainty is related to the feedrate.

Additional variables used

The following additional variables are used by this software:

- #174 This is used to store the X axis measured skip position. The value is set in macro O9726.
- #175 This is used to store the Y axis measured skip position. The value is set in macro O9726.
- #176 This is used to store the Z axis measured skip position. The value is set in macro O9726.

Approach feedrates

The feedrate for the approach to the stand-off position in macro O9726 is set at 3000 mm/min (120 in/min) in the X, Y and Z axes.

Back-off distance #562 (556 + 6)

This variable is not used in the one-touch cycles.

False trigger loop

At the end of the measuring move a false trigger test is made to see if the probe is triggered against a surface. If the probe has reseated, the measuring move continues. Four attempts are made before a PROBE OPEN alarm occurs.

Acceleration and deceleration allowance

To avoid the possibility of capturing bad data (see Machine distortion on page K-2), the one-touch basic move sets a checking zone dimension at the start and end of the measuring move. If the data captured is within these zones, a PROBE OPEN or PROBE FAIL alarm is generated.

The zone dimension is related to the feedrate and is currently set as follows:

Zone dimension = measuring feedrate / 1000 (i.e. zone factor = 1000)

NOTE: See Macro edits on page K-4 for details of setting the measuring feedrate.

Table K.3Example of zone allowance using default zone factor 1000		
Feedrate	Acceleration and decelaration allowance	
30 mm/min	0.03 mm	
60 mm/min	0.06 mm	
120 mm/min	0.12 mm	
500 mm/min	0.50 mm	

NOTE: The allowable measuring range is the Q stand-off distance + twice this zone value.

These values will be suitable in most cases, but optimisation or adjustment may be required on some machines. A test program can be prepared to test the measuring accuracy as follows:

- 1. Set the measuring feed rate in macro O9726.
- 2. Set a large Q value (for example, 3 mm (0.12 in) or greater).
- 3. Prepare a test program to measure a surface.
- 4. Measure the surface, ensuring the trigger is in the constant velocity zone (i.e. middle of measuring move) and record the first measured value.

- 5. Make a small STEP adjustment to the programmed surface position (for example, 0.5mm) and repeat the test, recording the total STEP dimension and the measured value.
- 6. Repeat step 5, making several STEP changes (in the same direction). You will see when the measured result deviates from the first recorded value. This is the point where measurement becomes affected by acceleration/deceleration.

Calculate the acceleration/deceleration value:

A = absolute ('Q' value - total STEP value)

Calculate the zone factor (see the descriptions above):

Zone factor = measuring feed rate / A

Q input

Qq q = Overtravel and stand-off position

The programming input and format is the same whether using one or twotouch cycles. The exception is that the Q input, which with two-touch cycles controls the overtravel distance, also controls the stand-off position for the one-touch cycles (see also Acceleration and deceleration allowance on page K-6).

NOTE: The Q value represents the allowable measuring range. The actual overtravel and stand-off distance is automatically increased by the acceleration and deceleration distance (see Acceleration and deceleration allowance on page K-6).

Measuring move detail

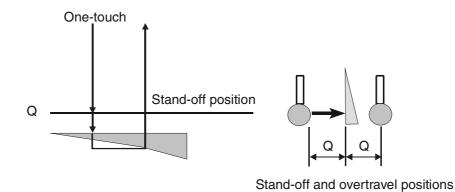
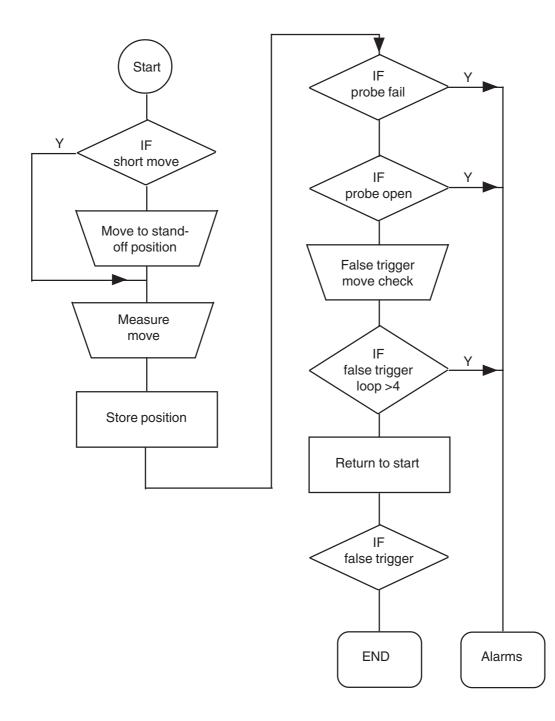



Figure K.1 Measuring move detail

One-touch measuring move logic

Glossary of terms – abbreviations and definitions

Definitions of many of the terms used are provided here to assist your understanding of the Inspection Plus software.

NOTE: This glossary also includes terms that are associated with probing but which have not been used in this publication.

ATAN calculation

This describes a *User transparent* macro written by Renishaw to handle the ATAN function in mathematical calculations.

User transparent

Macros which are used by the software but which do not get called directly by the user, i.e. they are for internal use by the software only.

BRDO

Ball radius directional offsets. This is a term that is used to describe the stored software compensations for the stylus ball radius. They are determined during calibration of the probe.

Bore / boss measure

This is a Renishaw measuring cycle type definition.

Bore – is an internal-width feature measurement on a circle. Feature types consist of holes or bores.

Boss – this is an external-width feature measurement on a circle. Feature types consist of shafts, bosses, and spigots.

Calibration

This is the method of establishing the probe trigger point compensations. They include the probe and machine effects which the software must use to correct the results.

C.W.

Clockwise

C.C.W.

Counter-clockwise.

Datum, datuming

This is the method used to establish a part feature reference point which is subsequently used for other measurement or machining operations. A datum defines any co-ordinate value as a reference position.

DPRNT

This is a Fanuc control command. It outputs ASCII data to the RS-232 port of the controller. It is used to output a part inspection report that is based on probe results.

DTI

Dial test indicator. This instrument is traditionally used for aligning vices and fixtures with respect to the machine axis.

Gauging move

This describes the movement of the probe onto the surface with data capture active, i.e. it is a measurement move.

IMM

Inductive module machine. Together with the *IMP*, it forms part of the inductive transmission system that is used to transmit signals back to the machine tool controller. The IMM is part of the inductive coupling and is mounted on the machine. See also *IMP*.

IMP

Inductive module probe. Together with the *IMM*, it forms part of the inductive transmission system that is used to transmit signals back to the machine tool controller. The IMP is part of the inductive coupling and is mounted on the probe. See also *IMM*.

INHIBIT

This is a Renishaw interface input signal. It is used to either stop or inhibit the transmission of the probe signal to the machine controller.

MDI

Manual data input. This is a commonly used term on Fanuc controllers (and controllers that emulate the Fanuc). It means that operation of the machine is determined by data that is entered through the keyboard.

MI5 interface

This is the Renishaw probe interface that is used to condition and control the probe signal to the machine tool.

M19 spindle orientation

This is the machine manufacturer's M-code function that instructs the machine spindle to rotate and orientate to a fixed position.

Nominal surface position

This is the expected surface position, or theoretical position. When used in relation to tolerances, it refers to the mid-position of the upper and lower limit of the surface.

ΟΜΙ

Optical module interface. This is a combined optical receiver and machine interface unit that forms part of the Renishaw optical probe transmission system. The unit is mounted either on the guarding or some other suitable position where it is within the transmission envelope and range of the probe.

OMM

Optical module machine. This is part of the Renishaw optical probe transmission system. The unit is mounted either on the guarding or some other suitable position where it is within the transmission envelope and range of the probe.

OMP

Optical module probe. This is part of the Renishaw optical probe transmission system. The unit is mounted on the probe unit.

Optimisation macro

This is part of the Renishaw software package. It is used to establish the optimum fast feed rates for probing and the optimum back-off distance.

PCD

Pitch circle diameter. This is a commonly used British term to mean a set of features placed in a circular pattern.

Probe trigger flag

This is a variable or diagnostic register which is set to a value when the probe is triggered.

Protected positioning

This is a means of moving the probe from place to place while the probe trigger signal is monitored. In the event of an unexpected triggering signal, the machine axis is halted to prevent damage to the probe stylus.

PTR

Paper tape reader. This is the machine's interface which is used to load the stored part programs. It is now largely superseded by the use of floppy disk drives, external PCs, and the RS-232 serial interface.

RMM

Receiver module machine. This is part of the Renishaw radio probe transmission system. The unit is mounted either on the guarding or some other suitable position where it is within the transmission envelope and range of the probe.

RMP

Radio module probe. This is part of the Renishaw radio probe transmission system. The unit is mounted on the probe.

SPC

Statistical process control. Some Renishaw software packages contain a macro which uses a simple form of SPC to control tool offset update corrections in closed loop machining.

Stylus

This is the probe tip assembly that is used to trigger the probe on the tool during measurement.

SSR

Solid state relay. The SSR converter terminal block is a Renishaw hardware unit which is used to convert the signal from a signal conditioning module into an SSR output signal.

Tolerance limits

These are the extreme upper and lower metal condition values from the nominal surface position.

Vector cycle, vector measure / calibration

This is a probe move, which move one or more machine axes simultaneously to approach the surface from the normal direction.

Vector stylus ball radius calibration

This is an extra set of probe stylus ball radius calibration values which must be determined when using vector cycles. They are the probe software compensation values required for probing in different directions.

Web pocket measure

This describes a Renishaw measuring cycle type definition.

Pocket – is an internal-width feature measurement. Feature types consist of slots, pockets, and internal recesses.

Web – is an external-width feature measurement. Feature types consist of blocks, plate widths, and upstanding keys.

Work zero point

This is a similar concept to *Datum*. It defines where the work co-ordinate system is set to zero. A datum can define any co-ordinate value as a reference position.

Workpiece datum

This can be any workpiece feature or co-ordinate, which is chosen as a reference position.

Renishaw plc

New Mills, Wotton-under-Edge, Gloucestershire, GL12 8JR United Kingdom T +44 (0)1453 524524 F +44 (0)1453 524901 E uk@renishaw.com

www.renishaw.com

Renishaw worldwide

Australia

- T +61 3 9521 0922
- E australia@renishaw.com

Brazil

- T +55 11 4195 2866
- E brazil@renishaw.com

The People's Republic of China

- T +86 10 6410 7993
- E beijing@renishaw.com

Czech Republic

- T +420 5 4821 6553
- E czech@renishaw.com

France

- T +33 1 64 61 84 84
- E france@renishaw.com

Germany

- T +49 7127 9810
- E germany@renishaw.com

Hong Kong

- T +852 2753 0638
- E hongkong@renishaw.com

India

- T +91 80 5320 144
- E india@renishaw.com

Italy

- T +39 011 966 10 52 E italy@renishaw.com
- L haly eremsnaw.com

Japan

- T +81 3 5332 6021
- E japan@renishaw.com

The Netherlands

T +31 76 543 11 00 E benelux@renishaw.com

Poland

T +48 22 5758000 E poland@renishaw.com

Russia

T +7/095/113 42 44 E russia@renishaw.com

Singapore

- T +65 6897 5466
- E singapore@renishaw.com

Slovenia

T +386 1 52 72 100 E mail@rls.si

South Korea

- T +82 2 565 6878
- E southkorea@renishaw.com

Spain

- T +34 93 478 21 31
- E spain@renishaw.com

Switzerland

- T +41 55 415 50 60
- E switzerland@renishaw.com

Taiwan

- T +886 4 251 3665
- E taiwan@renishaw.com

UK (Head Office)

- T +44 (0)1453 524524
- E uk@renishaw.com

USA

- T +1 847 286 9953
- E usa@renishaw.com

For all other countries

- T +44 1453 524524
- E international@renishaw.com